基于官方YOLOv4開發構建目標檢測模型超詳細實戰教程【以自建缺陷檢測數據集為例】

本文是關于基于YOLOv4開發構建目標檢測模型的超詳細實戰教程,超詳細實戰教程相關的博文在前文有相應的系列,感興趣的話可以自行移步閱讀即可:
《基于yolov7開發實踐實例分割模型超詳細教程》

《YOLOv7基于自己的數據集從零構建模型完整訓練、推理計算超詳細教程》

《DETR (DEtection TRansformer)基于自建數據集開發構建目標檢測模型超詳細教程》

《基于yolov5-v7.0開發實踐實例分割模型超詳細教程》

《輕量級模型YOLOv5-Lite基于自己的數據集【焊接質量檢測】從零構建模型超詳細教程》

《輕量級模型NanoDet基于自己的數據集【接打電話檢測】從零構建模型超詳細教程》

《基于YOLOv5-v6.2全新版本模型構建自己的圖像識別模型超詳細教程》

《基于自建數據集【海底生物檢測】使用YOLOv5-v6.1/2版本構建目標檢測模型超詳細教程》

?《超輕量級目標檢測模型Yolo-FastestV2基于自建數據集【手寫漢字檢測】構建模型訓練、推理完整流程超詳細教程》

《基于YOLOv8開發構建目標檢測模型超詳細教程【以焊縫質量檢測數據場景為例】》

最早期接觸v3和v4的時候印象中模型的訓練方式都是基于Darknet框架開發構建的,模型都是通過cfg文件進行配置的,從v5開始才全面轉向了PyTorch形式的項目,延續到了現在。

yolov4.cfg如下:

[net]
batch=64
subdivisions=8
# Training
#width=512
#height=512
width=608
height=608
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1learning_rate=0.0013
burn_in=1000
max_batches = 500500
policy=steps
steps=400000,450000
scales=.1,.1#cutmix=1
mosaic=1#:104x104 54:52x52 85:26x26 104:13x13 for 416[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish# Downsample[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[route]
layers = -2[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[route]
layers = -1,-7[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish# Downsample[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[route]
layers = -2[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish[route]
layers = -1,-10[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish# Downsample[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[route]
layers = -2[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=mish[route]
layers = -1,-28[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish# Downsample[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[route]
layers = -2[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=mish[route]
layers = -1,-28[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish# Downsample[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[route]
layers = -2[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=mish[shortcut]
from=-3
activation=linear[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=mish[route]
layers = -1,-16[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=mish##########################[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky### SPP ###
[maxpool]
stride=1
size=5[route]
layers=-2[maxpool]
stride=1
size=9[route]
layers=-4[maxpool]
stride=1
size=13[route]
layers=-1,-3,-5,-6
### End SPP ###[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2[route]
layers = 85[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[route]
layers = -1, -3[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2[route]
layers = 54[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[route]
layers = -1, -3[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky##########################[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear[yolo]
mask = 0,1,2
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
scale_x_y = 1.2
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
max_delta=5[route]
layers = -4[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=256
activation=leaky[route]
layers = -1, -16[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear[yolo]
mask = 3,4,5
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
scale_x_y = 1.1
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
max_delta=5[route]
layers = -4[convolutional]
batch_normalize=1
size=3
stride=2
pad=1
filters=512
activation=leaky[route]
layers = -1, -37[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear[yolo]
mask = 6,7,8
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=80
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
max_delta=5

yolov4-tiny.cfg如下:

[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1learning_rate=0.00261
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1[convolutional]
batch_normalize=1
filters=32
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[route]
layers=-1
groups=2
group_id=1[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky[route]
layers = -1,-2[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky[route]
layers = -6,-1[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[route]
layers=-1
groups=2
group_id=1[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky[route]
layers = -1,-2[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[route]
layers = -6,-1[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky[route]
layers=-1
groups=2
group_id=1[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky[route]
layers = -1,-2[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[route]
layers = -6,-1[maxpool]
size=2
stride=2[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky##################################[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear[yolo]
mask = 3,4,5
anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
classes=80
num=6
jitter=.3
scale_x_y = 1.05
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
ignore_thresh = .7
truth_thresh = 1
random=0
resize=1.5
nms_kind=greedynms
beta_nms=0.6[route]
layers = -4[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky[upsample]
stride=2[route]
layers = -1, 23[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear[yolo]
mask = 1,2,3
anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
classes=80
num=6
jitter=.3
scale_x_y = 1.05
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
ignore_thresh = .7
truth_thresh = 1
random=0
resize=1.5
nms_kind=greedynms
beta_nms=0.6

最開始的時候還是蠻喜歡這種形式的,非常的簡潔,直接使用Darknet框架訓練也很方便,到后面隨著模型改進各種組件的替換,Darknet變得越發不適用了。YOLOv4的話感覺定位相比于v3和v5來說比較尷尬一些,git里面搜索yolov4,結果如下所示:

排名第一的項目是pytorch-YOLOv4,地址在這里,如下所示:

從說明里面來看,這個只是一個minimal的實現:

官方的實現應該是:

仔細看的話會發現,官方這里提供了YOLOv3風格的實現項目以及YOLOv5風格的實現項目,本文主要是以YOLOv3風格的YOLOv4項目為基準來講解完整的實踐流程,項目地址在這里,如下所示:

首先下載所需要的項目,如下:

下載到本地解壓縮后,如下所示:

網上直接百度下載這兩個weights文件放在weights目錄下,如下所示:

然后隨便復制過來一個自己之前yolov5項目的數據集放在當前項目目錄下,我是前面剛好基于yolov5做了鋼鐵缺陷檢測項目,數據集可以直接拿來用,如果沒有現成的數據集的話可以看我簽名yolov5的超詳細教程里面可以按照步驟自己創建數據集即可。如下所示:

這里我選擇的是基于yolov4-tiny版本的模型來進行開發訓練,為的就是計算速度能夠更快一些。

修改train.py里面的內容,如下所示:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='weights/yolov4-tiny.weights', help='initial weights path')
parser.add_argument('--cfg', type=str, default='cfg/yolov4-tiny.cfg', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/self.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()

終端直接執行:

python train.py

即可。

當然也可以選擇基于參數指定的形式啟動,如下:

python train.py --device 0 --batch-size 16 --img 640 640 --data self.yaml --cfg cfg/yolov4-tiny.cfg --weights 'weights/yolov4-tiny.weights' --name yolov4-tiny

根據個人喜好來選擇即可。

啟動訓練終端輸出如下所示:

訓練完成截圖如下所示:

?訓練完成我們來看下結果文件,如下所示:

可以看到:結果文件直觀來看跟yolov5項目差距還是很大的,評估指標只有一個PR圖,所以如果是做論文的話最好還是使用yolov5來做會好點。

PR曲線如下所示:

訓練可視化如下所示:

LABEL數據可視化如下所示:

weights目錄如下所示:

這個跟yolov5項目差異也是很大的,yolov5項目只有兩個pt文件,一個是最優的一個是最新的,但是yolov4項目居然產生了19個文件,保存的可以說是非常詳細了有點像yolov7,但是比v7維度更多一些。

感興趣的話都可以按照我上面的教程步驟開發構建自己的目標檢測模型。

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/168040.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/168040.shtml
英文地址,請注明出處:http://en.pswp.cn/news/168040.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

springboot(ssm超市貨品信息管理系統 超市購物系統Java(codeLW)

springboot(ssm超市貨品信息管理系統 超市購物系統Java(code&LW) 開發語言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服務器:tomcat 數據庫:mysql 5.7(或8.0&am…

Linux技能篇-非交互式修改密碼

今天的文章沒有格式,簡單分享一個小技能,就是標題所說–非交互式修改密碼。 一、普通方式修改用戶密碼 最普通的修改密碼的命令就是passwd命令 [rootlocalhost ~]# passwd root Changing password for user root. New password: Retype new password:…

一文徹底看懂Python切片,Python切片理解與操作

1.什么是切片 切片是Python中一種用于操作序列類型(如列表、字符串和元組)的方法。它通過指定起始索引和結束索引來截取出序列的一部分,形成一個新的序列。切片是訪問特定范圍內的元素,就是一個Area。 說個笑話:切片不是切片,而是切片,但是又是切片。大家理解下呢(末…

高防cdn防護原理是什么,是否可以防護服務器嗎

隨著互聯網業務的迅速發展,網絡安全問題日益凸顯。在這樣的背景下,高防CDN作為一種有效的網絡安全解決方案,受到了越來越多的關注。那么高防CDN的防護原理是什么呢?接下來就跟小德一起深入了解下吧! 1. 高防CDN的基本概念 我們要明確什么是…

【云原生 Prometheus篇】Prometheus的動態服務發現機制

自動發現 一、Prometheus服務發現 理論部分1.1 Prometheus數據采集配置1.2 基于文件的服務發現1.3 基于consul的服務發現1.4 基于 Kubernetes API 的服務發現1.4.1 概念1.4.2 部分配置參數1.4.3 配置模板 二、實例一:部署基于文件的服務發現2.1 創建用于服務發現的文…

Spring事務底層原理(待完善)

EnableTransactionManagement 我們經常使用EnableTransactionManagement開啟事務, 這個注解導入一個類,Import(TransactionManagementConfigurationSelector.class), 會在spring容器增加兩個bean, AutoProxyRegistrar和ProxyTransactionManagementConfiguration. AutoProxyRe…

IDEA中常用快捷鍵

整理了一些IDEA開發常用的快捷鍵: 快捷鍵組合實現效果psvm Tab鍵 / main Tab鍵public static void main(String[] args)sout Tab鍵System.out.println()Ctrl X刪除當前行Ctrl D復制當前行AltInsert(或右鍵Generate)生成代碼(如get,set方法,構造函數等)CtrlAltT…

存儲區域

將應用程序加載到內存空間執行時,操作系統負責代碼段、數據段和BSS段的加載,并在內存中為這些段分配空間。 棧段亦由操作系統分配和管理,而不需要程序員顯示地管理;堆段由程序員自己管理,即顯示地申請和釋放空間。 進…

uniapp 輪播圖(含組件封裝,自動注冊全局組件)

效果預覽 組件封裝 src\components\SUI_Swiper.vue 可參考官網配置更多屬性 swipernavigator <script setup lang"ts"> import { ref } from vue defineProps({config: Object, })const activeIndex ref(0) const change: UniHelper.SwiperOnChange (e) &…

WPF面試題入門篇

入門篇[2] 1. 談談什么是WPF&#xff1f; WPF&#xff08;Windows Presentation Foundation&#xff09;是微軟公司開發的一種用于創建Windows應用程序的用戶界面框架。它是.NET Framework的一部分&#xff0c;提供了一種基于XAML&#xff08;可擴展應用程序標記語言&#xf…

【算法技巧】位運算

目錄 1.概述2.位運算技巧2.1.與運算 (&)2.1.1.判斷奇偶性2.1.2.判斷一個數是否是 2 的冪2.1.3.將英文字母轉換為大寫2.1.4.代替取模運算 2.2.或運算 (|)2.2.1.將英文字母轉換為小寫 2.3.異或運算 (^)2.3.1.消除成對相同的數2.3.2.不使用臨時變量來交換兩個數2.3.3.進行英文…

一起學docker系列之八使用 Docker 安裝配置 MySQL

目錄 前言步驟 1&#xff1a;拉取 MySQL 鏡像步驟 2&#xff1a;運行 MySQL 容器步驟 3&#xff1a;檢查容器狀態步驟 4&#xff1a;進入 MySQL 容器步驟 5&#xff1a;配置 MySQL 字符編碼步驟 6&#xff1a;重啟 MySQL 容器步驟 7&#xff1a;測試字符編碼步驟 8&#xff1a;…

防止應用程序截屏(容器式,防止極域電子教室和錄屏軟件錄制)

核心原理、實現目的 1、使用Panel容器將外部窗口嵌入自己寫的程序 2、使用防止截屏的函數來對窗口透明&#xff0c;這可以使本窗口內所有窗口在錄屏軟件上消失 3、解放&#xff0c;抓取&#xff0c;存儲句柄&#xff0c;實現擺脫錄屏&#xff08;極域監控&#xff09; 程序…

用 Addon 增強 Node.js 和 Electron 應用的原生能力

前言 Node.js Addon 是 Node.js 中為 JavaScript 環境提供 C/C 交互能力的機制。其形態十分類似 Java 的 JNI&#xff0c;都是通過提供一套 C/C SDK&#xff0c;用于在 C/C 中創建函數方法、進行數據轉換&#xff0c;以便 JavaScript / Java 等語言進行調用。這樣編寫的代碼通常…

Spring - Mybatis-設計模式總結

Mybatis-設計模式總結 1、Builder模式 2、工廠模式 3、單例模式 4、代理模式 5、組合模式 6、模板方法模式 7、適配器模式 8、裝飾者模式 9、迭代器模式 雖然我們都知道有26個設計模式&#xff0c;但是大多停留在概念層面&#xff0c;真實開發中很少遇到&#xff0c;…

【數據結構】時間和空間復雜度

馬上就要進入到數據結構的學習了 &#xff0c;我們先來了解一下時間和空間復雜度&#xff0c;這也可以判斷我們的算法是否好壞&#xff1b; 如何衡量一個算法的好壞&#xff1f; 就是看它的算法效率 算法效率 算法效率分析分為兩種&#xff1a;第一種是時間效率&#xff0c;第…

C++ Qt QVariant類型使用介紹與代碼演示

作者:令狐掌門 技術交流QQ群:675120140 csdn博客:https://mingshiqiang.blog.csdn.net/ 文章目錄 一、QVariant基本用法二、自定義類型使用QVariant三、其它用法賦值修改和替換值使用`QVariant::setValue()`設置值復制構造函數和賦值操作比較使用`QVariant::swap()`交換值使…

CVE-2023-22515:Atlassian Confluence權限提升漏洞復現 [附POC]

文章目錄 Atlassian Confluence權限提升(CVE-2023-22515)漏洞復現 [附POC]0x01 前言0x02 漏洞描述0x03 影響版本0x04 漏洞環境0x05 漏洞復現1.訪問漏洞環境2.構造POC3.復現 0x06 修復建議 Atlassian Confluence權限提升(CVE-2023-22515)漏洞復現 [附POC] 0x01 前言 免責聲明&…

vue中下載文件后無法打開的坑

今天在項目開發的時候臨時要添加個導出功能我就寫了一份請求加導出得代碼&#xff0c; 代碼&#xff1a; //導出按鈕放開exportDutySummarizing (dataRangeInfo) {const params {departmentName: dataRangeInfo.name,departmentQode: dataRangeInfo.qode}//拼接所需得urlcons…

UserRole

Qt::UserRole 是 Qt::ItemDataRole 枚舉中的一個成員&#xff0c;用于表示自定義數據角色&#xff08;Data Role&#xff09;的起始值。 在 Qt 中&#xff0c;Qt::ItemDataRole 枚舉用于標識項&#xff08;Item&#xff09;中不同類型的數據。這些數據角色包括 Qt::DisplayRol…