以下是一些OpenCV中常用的代碼片段,涵蓋了一些基本的圖像處理和計算機視覺任務。
-
加載和顯示圖像:
import cv2# 讀取圖像 img = cv2.imread('image.jpg')# 顯示圖像 cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows()
-
調整圖像大小:
resized_img = cv2.resize(img, (width, height))
-
灰度轉換:
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
-
圖像平滑:
smoothed_img = cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
-
邊緣檢測:
edges = cv2.Canny(gray_img, threshold1, threshold2)
-
圖像閾值處理:
ret, binary_img = cv2.threshold(gray_img, threshold_value, max_value, cv2.THRESH_BINARY)
-
圖像輪廓檢測:
contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
-
繪制輪廓:
cv2.drawContours(img, contours, -1, (0, 255, 0), 2)
-
人臉檢測:
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.3, minNeighbors=5)
-
圖像旋轉:
rows, cols = img.shape[:2] M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale) rotated_img = cv2.warpAffine(img, M, (cols, rows))
-
圖像腐蝕與膨脹:
kernel = np.ones((kernel_size, kernel_size), np.uint8) eroded_img = cv2.erode(img, kernel, iterations=1) dilated_img = cv2.dilate(img, kernel, iterations=1)
-
圖像直方圖均衡化:
equ_img = cv2.equalizeHist(gray_img)
-
圖像混合:
blended_img = cv2.addWeighted(img1, alpha, img2, beta, gamma)
-
圖像拼接:
stitched_img = cv2.hconcat([img1, img2])
-
圖像截取:
roi = img[y:y+h, x:x+w]
-
圖像相加:
added_img = cv2.add(img1, img2)
-
圖像減法:
subtracted_img = cv2.subtract(img1, img2)
-
圖像位運算:
bitwise_and = cv2.bitwise_and(img1, img2) bitwise_or = cv2.bitwise_or(img1, img2) bitwise_xor = cv2.bitwise_xor(img1, img2) bitwise_not = cv2.bitwise_not(img)
-
圖像平均模糊:
averaged_img = cv2.blur(img, (kernel_size, kernel_size))
-
中值濾波:
median_blurred_img = cv2.medianBlur(img, ksize)
-
自適應閾值:
adaptive_thresh = cv2.adaptiveThreshold(gray_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
-
圖像旋轉縮放:
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, scale) rotated_resized_img = cv2.warpAffine(img, M, (new_cols, new_rows))
-
SIFT 特征提取和匹配:
sift = cv2.SIFT_create() keypoints1, descriptors1 = sift.detectAndCompute(img1, None) keypoints2, descriptors2 = sift.detectAndCompute(img2, None)
-
SURF 特征提取和匹配:
surf = cv2.SURF_create() keypoints1, descriptors1 = surf.detectAndCompute(img1, None) keypoints2, descriptors2 = surf.detectAndCompute(img2, None)
-
ORB 特征提取和匹配:
orb = cv2.ORB_create() keypoints1, descriptors1 = orb.detectAndCompute(img1, None) keypoints2, descriptors2 = orb.detectAndCompute(img2, None)
-
使用 FLANN 匹配器進行特征匹配:
FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(descriptors1, descriptors2, k=2)
-
簡單圖像深度學習任務:
net = cv2.dnn.readNet('model.weights', 'model.cfg') blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=(104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward()
-
HOG 特征提取與行人檢測:
hog = cv2.HOGDescriptor() hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) boxes, weights = hog.detectMultiScale(img, winStride=(8, 8), padding=(0, 0), scale=1.05)
這些是一些基本的OpenCV代碼示例,覆蓋了圖像處理和計算機視覺中的常見任務。在實際應用中,可能需要根據具體場景和需求進一步調整參數和算法。