代數基本定理
對于多項式 f(z)=anzn+an?1zn?1+?+a1z+a0f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0f(z)=an?zn+an?1?zn?1+?+a1?z+a0?(其中 n>1n > 1n>1 且 an,a0≠0a_n, a_0 \neq 0an?,a0?=0),它在復數域內有根。
f(z)=U(r,θ)+V(r,θ)i f(z) = U(r, \theta) + V(r, \theta)i f(z)=U(r,θ)+V(r,θ)i
其中 rrr 和 θ\thetaθ 分別是 zzz 的模和幅角。
CR條件
r?U?r=?V?θr?V?r=??U?θ \begin{align*} r\frac{\partial U}{\partial r} &= \frac{\partial V}{\partial \theta} \\ r\frac{\partial V}{\partial r} &= -\frac{\partial U}{\partial \theta} \end{align*} r?r?U?r?r?V??=?θ?V?=??θ?U??
構造二元實函數 HHH
H(r,θ)=arctan?(U(r,θ)V(r,θ)) H(r, \theta) = \arctan\left(\frac{U(r, \theta)}{V(r, \theta)}\right) H(r,θ)=arctan(V(r,θ)U(r,θ)?)
HHH 的二階混合偏導數
?2H?r?θ=??r(?U?θV?U?V?θV2+U2) \frac{\partial^2 H}{\partial r \partial \theta} = \frac{\partial}{\partial r} \left( \frac{\frac{\partial U}{\partial \theta}V - U\frac{\partial V}{\partial \theta}}{V^2 + U^2} \right) ?r?θ?2H?=?r??(V2+U2?θ?U?V?U?θ?V??)
累次積分 I1I_1I1? 和 I2I_2I2?
I1=∫0Rdr∫02π?2H?r?θdθ,I2=∫02πdθ∫0R?2H?r?θdr I_1 = \int_{0}^{R} dr \int_{0}^{2\pi} \frac{\partial^2 H}{\partial r \partial \theta} d\theta, \quad I_2 = \int_{0}^{2\pi} d\theta \int_{0}^{R} \frac{\partial^2 H}{\partial r \partial \theta} dr I1?=∫0R?dr∫02π??r?θ?2H?dθ,I2?=∫02π?dθ∫0R??r?θ?2H?dr
假設 f(z)f(z)f(z) 無根
假設 f(z)f(z)f(z) 無根,則 U2+V2≠0U^2 + V^2 \neq 0U2+V2=0,從而 ?2H?r?θ\frac{\partial^2 H}{\partial r \partial \theta}?r?θ?2H? 連續,積分順序可交換,并且 I1=I2I_1 = I_2I1?=I2?。
I1I_1I1? 和 I2I_2I2? 不恒等
∫02π?2H?r?θdθ=0?????I1=0 \int_{0}^{2\pi} \frac{\partial^2 H}{\partial r \partial \theta} d\theta = 0 \implies I_1 = 0 ∫02π??r?θ?2H?dθ=0?I1?=0
I2=lim?R→∞∫02πdθ∫0R?2H?r?θdr=∫02πdθ(?H?θ∣r=0r=R)=?2πn I_2 = \lim_{R \to \infty} \int_{0}^{2\pi} d\theta \int_{0}^{R} \frac{\partial^2 H}{\partial r \partial \theta} dr = \int_{0}^{2\pi} d\theta \left( \left. \frac{\partial H}{\partial \theta} \right|_{r=0}^{r=R} \right) = -2\pi n I2?=R→∞lim?∫02π?dθ∫0R??r?θ?2H?dr=∫02π?dθ(?θ?H??r=0r=R?)=?2πn
結論
由于 I1≠I2I_1 \neq I_2I1?=I2?,存在 rm,θmr_m, \theta_mrm?,θm? 使得 U2(rm,θm)+V2(rm,θm)=0U^2(r_m, \theta_m) + V^2(r_m, \theta_m) = 0U2(rm?,θm?)+V2(rm?,θm?)=0,即存在某個 zm=rmeiθmz_m = r_m e^{i\theta_m}zm?=rm?eiθm? 使得 f(zm)=0f(z_m) = 0f(zm?)=0。