一、環境準備與依賴安裝
1.1 系統
- 硬件: GPU NVIDIA 3070加速模型推理,內存64GB
- 軟件:
- Python 3.11
- Docker 28.04(用于容器化部署)
- Kubernetes 1.25(可選,用于集群管理)
1.2 安裝 ADK 工具鏈
# 安裝 Google ADK Python SDK
pip install google-adk# 安裝依賴庫
pip install tensorflow-serving-api==2.13.0 \torch==2.1.0+cu121 \pinecone-client==2.2.0
1.3 初始化項目結構
mkdir my_agent_project && cd my_agent_project
adk init --template=multi-agent # 選擇多智能體模板
二、智能體開發核心步驟
2.1 定義智能體能力(Agent Card)
創建 agent_card.json
:
{"name": "financial-analyzer","version": "v1.0.0","description": "金融數據分析智能體,支持財報分析、風險評估","skills": ["financial-report", "risk-assessment", "market-trend"],"endpoints": {"query": "http://localhost:8080/query","stream": "http://localhost:8080/stream"},"authentication": {"type": "oauth2","client_id": "your_client_id","scopes": ["financial-data:read"]}
}
2.2 實現智能體邏輯(Python 代碼)
# agents/financial_analyzer.py
from google.adk.agents import Agent
from google.adk.tasks import Task
from google.adk.memory import LongTermMemoryclass FinancialAnalyzer(Agent):def __init__(self):super().__init__(name="financial-analyzer")self.memory = LongTermMemory(pinecone_api_key="your_pinecone_key")self.models = {"risk_model": load_model("models/risk_assessment.pth"),"trend_model": load_model("models/market_trend.pth")}async def handle_task(self, task: Task):# 處理用戶請求if task.type == "financial-report":return await self.analyze_financial_report(task.payload)elif task.type == "risk-assessment":return await self.assess_risk(task.payload)async def analyze_financial_report(self, data: dict):# 調用外部 API 獲取財報數據financial_data = await self.invoke_tool("fetch-financial-data", data)# 模型推理analysis = self.models["risk_model"].predict(financial_data)# 存儲到長期記憶self.memory.save("financial-analysis", analysis)return analysisasync def assess_risk(self, data: dict):# 結合歷史分析結果history = self.memory.retrieve("financial-analysis")# 多模型融合risk_score = self.models["trend_model"].predict({**data, **history})return {"risk_score": risk_score}
2.3 配置工具鏈
在 toolchain.yaml
中定義工具:
tools:- name: fetch-financial-datatype: apiendpoint: https://api.finance.com/reportmethod: POSTheaders:Authorization: Bearer ${FINANCE_API_KEY}
三、多智能體協同開發
3.1 定義任務流程(BPMN 2.0)
使用 FlowStudio 設計工作流:
<process id="financial-workflow"><startEvent id="start"/><sequenceFlow sourceRef="start" targetRef="analyze-report"/><serviceTask id="analyze-report" name="分析財報" agentRef="financial-analyzer" taskType="financial-report"/><sequenceFlow sourceRef="analyze-report" targetRef="assess-risk"/><serviceTask id="assess-risk" name="風險評估" agentRef="financial-analyzer" taskType="risk-assessment"/><endEvent id="end"/>
</process>
3.2 實現任務編排
# workflows/financial_workflow.py
from google.adk.orchestration import WorkflowEngineclass FinancialWorkflow(WorkflowEngine):def __init__(self):super().__init__(name="financial-workflow")self.register_agent("financial-analyzer", FinancialAnalyzer())async def execute(self, user_request: dict):# 啟動工作流task = Task(type="financial-report",payload=user_request,workflow_id=self.id)result = await self.dispatch(task)return result
四、調試與測試
4.1 本地調試
# 啟動本地服務
adk run --port 8080# 測試請求
curl -X POST http://localhost:8080/query \-H "Content-Type: application/json" \-d '{"query": "分析蘋果公司2024年Q3財報","task_type": "financial-report"}'
4.2 單元測試
# tests/test_financial_analyzer.py
from agents.financial_analyzer import FinancialAnalyzerdef test_financial_analysis():agent = FinancialAnalyzer()mock_data = {"company": "Apple", "quarter": "2024Q3"}result = agent.analyze_financial_report(mock_data)assert "risk_score" in result
五、性能優化
5.1 模型量化
# 量化模型
import tensorflow as tf
from tensorflow_model_optimization.sparsity import kerasdef quantize_model(model):converter = tf.lite.TFLiteConverter.from_keras_model(model)converter.optimizations = [tf.lite.Optimize.DEFAULT]converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]converter.inference_input_type = tf.int8converter.inference_output_type = tf.int8quantized_model = converter.convert()return quantized_model
5.2 硬件加速配置
# deployment/gpu_config.yaml
resources:limits:nvidia.com/gpu: 1requests:nvidia.com/gpu: 1
六、容器化部署
6.1 Dockerfile
FROM tensorflow/tensorflow:latest-gpuWORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txtCOPY . .CMD ["adk", "serve", "--config", "config.yaml"]
6.2 Kubernetes 部署
# kubernetes/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:name: financial-agent
spec:replicas: 3selector:matchLabels:app: financial-agenttemplate:metadata:labels:app: financial-agentspec:containers:- name: financial-agentimage: financial-agent:v1.0ports:- containerPort: 8080resources:limits:nvidia.com/gpu: 1
七、安全與合規
7.1 身份驗證
# security/auth.py
from google.auth.transport.requests import Request
from google.oauth2 import id_tokendef verify_token(token):try:idinfo = id_token.verify_oauth2_token(token, Request())if idinfo["aud"] != "your_client_id":raise ValueError("Invalid audience")return idinfoexcept ValueError:return None
7.2 數據加密
# security/encryption.py
from cryptography.fernet import Fernetclass DataEncryptor:def __init__(self, key):self.cipher_suite = Fernet(key)def encrypt(self, data):return self.cipher_suite.encrypt(data.encode())def decrypt(self, encrypted_data):return self.cipher_suite.decrypt(encrypted_data).decode()
八、監控與運維
8.1 Prometheus 指標采集
# monitoring/metrics.py
from prometheus_client import Counter, GaugeREQUESTS_TOTAL = Counter('agent_requests_total', 'Total requests processed')
LATENCY = Gauge('agent_latency_seconds', 'Request latency')@LATENCY.time()
@REQUESTS_TOTAL.count_exceptions()
async def handle_request():# 業務邏輯pass
8.2 日志配置
# logging_config.py
import logging
from pythonjsonlogger import jsonloggerlogger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)handler = logging.StreamHandler()
formatter = jsonlogger.JsonFormatter("%(asctime)s %(levelname)s %(name)s %(message)s"
)
handler.setFormatter(formatter)
logger.addHandler(handler)
九、聯邦學習集成示例
# federated_learning.py
import tensorflow_federated as tffclass FederatedTrainer:def __init__(self):self.model = create_model()self.client_datasets = load_client_datasets()def train(self):iterative_process = tff.learning.build_federated_averaging_process(model_fn=lambda: self.model,client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.01))state = iterative_process.initialize()for _ in range(10):state, metrics = iterative_process.next(state, self.client_datasets)return state.model
十、性能測試與優化
10.1 壓力測試
# 使用 locust 進行壓測
locust -f locustfile.py --host=http://localhost:8080
10.2 性能優化策略
優化方向 | 方法 | 預期效果 |
---|---|---|
模型推理 | 量化感知訓練(QAT) | 推理速度提升3倍 |
并發處理 | 異步任務隊列 | 吞吐量提升至1000 req/s |
內存管理 | 顯存動態分配 | 內存占用降低40% |
網絡傳輸 | gRPC流式傳輸 | 端到端延遲控制在100ms以內 |
十一、生產環境部署建議
-
高可用性:
- 使用 Kubernetes 進行自動擴縮容
- 配置多可用區部署(如 Google Cloud 區域 A/B)
-
容災機制:
- 實現重試邏輯(最多3次)
- 配置斷路器(Circuit Breaker)
-
監控告警:
- 關鍵指標:請求成功率(≥99.9%)、平均響應時間(≤200ms)
- 告警閾值:錯誤率>5% 或延遲>500ms 觸發警報
-
合規認證:
- 完成 ISO/IEC 27001 認證
- 定期進行滲透測試(每季度一次)
十二、行業最佳實踐
-
金融領域:
- 集成實時市場數據 API(如 Alpha Vantage)
- 實現反欺詐模型(準確率>99.5%)
-
醫療領域:
- 支持 DICOM 格式影像分析
- 聯邦學習框架(如 TensorFlow Federated)保護患者隱私
-
工業領域:
- 預測性維護系統(設備故障預警準確率>95%)
- 邊緣計算優化(端側推理延遲<50ms)