7.傅里葉級數練習題
設函數:
f ( x ) = { ? x , 0 ≤ x ≤ 1 2 , 2 ? 2 x , 1 2 < x < 1 , f(x) = \begin{cases} -x, & 0 \leq x \leq \frac{1}{2}, \\ 2 - 2x, & \frac{1}{2} < x < 1, \end{cases} f(x)={?x,2?2x,?0≤x≤21?,21?<x<1,?
將 (f(x)) 展開成周期 (T = 2) 的正弦級數,則:
S ( ? 5 2 ) = ? S\left(-\frac{5}{2}\right) = ? S(?25?)=?
(A) (0)
(B) (\frac{1}{4})
? (-\frac{1}{4})
(D) (1)
解答
注意周期 (T = 2) 且為正弦級數,由傅里葉級數收斂定理,可計算如下:
S ( ? 5 2 ) = S ( ? 1 2 ) = 1 2 [ f ( 1 2 ? 0 ) + f ( 1 2 + 0 ) ] . S\left(-\frac{5}{2}\right) = S\left(-\frac{1}{2}\right) = \frac{1}{2} \left[f\left(\frac{1}{2} - 0\right) + f\left(\frac{1}{2} + 0\right)\right]. S(?25?)=S(?21?)=21?[f(21??0)+f(21?+0)].
根據定義,代入 (f(x)) 的表達式:
f ( 1 2 ? 0 ) = ? 1 2 , f ( 1 2 + 0 ) = 2 ? 2 ? 1 2 = 1. f\left(\frac{1}{2} - 0\right) = -\frac{1}{2}, \quad f\left(\frac{1}{2} + 0\right) = 2 - 2 \cdot \frac{1}{2} = 1. f(21??0)=?21?,f(21?+0)=2?2?21?=1.
因此:
S ( ? 5 2 ) = 1 2 [ ? 1 2 + 1 ] = ? 1 4 . S\left(-\frac{5}{2}\right) = \frac{1}{2} \left[-\frac{1}{2} + 1\right] = -\frac{1}{4}. S(?25?)=21?[?21?+1]=?41?.
答案
選擇 ?。
設 $ f(x) $ 的周期為 $ 2\pi $,在 ( ? π , π ] (-π, π] (?π,π] 上 $ f(x) = x + x^2 $,其三角級數為
a 0 2 + ∑ n = 1 ∞ ( a n cos ? n x + b n sin ? n x ) = S ( x ) \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = S(x) 2a0??+n=1∑∞?(an?cosnx+bn?sinnx)=S(x)
則 $ b_3 + S(π) = $
(A) 0.
(B) $ π^2 $.
? $ \frac{2}{3} + π^2 $.
(D) $ \frac{2}{3} - π^2 $.
解析
選 ?.
b 3 = 1 π ∫ ? π π ( x + x 2 ) sin ? 3 x d x = 2 π ∫ 0 π x sin ? 3 x d x = 2 3 , b_3 = \frac{1}{π} \int_{-π}^{π} (x + x^2) \sin 3x dx = \frac{2}{π} \int_{0}^{π} x \sin 3x dx = \frac{2}{3}, b3?=π1?∫?ππ?(x+x2)sin3xdx=π2?∫0π?xsin3xdx=32?,
S ( π ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ? n π + b n sin ? n π ) = f ? ( π ) = f ( π ? ) + f ( ? π + ) 2 S(π) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nπ + b_n \sin nπ) = f^*(π) = \frac{f(π^-) + f(-π^+)}{2} S(π)=2a0??+n=1∑∞?(an?cosnπ+bn?sinnπ)=f?(π)=2f(π?)+f(?π+)?
= 1 2 [ ( π + π 2 ) + ( ? π + π 2 ) ] = π 2 , = \frac{1}{2} \left[ (π + π^2) + (-π + π^2) \right] = π^2, =21?[(π+π2)+(?π+π2)]=π2,
故 $ b_3 + S(π) = \frac{2}{3} + π^2 $.