論文
文章目錄
- 論文
- 基于異構圖的GNN論文
- GNN領域論文
- 環境領域GNN論文
隨緣更新
基于異構圖的GNN論文
- Distance Information Improves Heterogeneous Graph Neural Networks:DOI: 10.1109/TKDE.2023.3300879
- 轉導和歸納任務,創新點:異構距離編碼HDE提高GNN表現能力
- Heterogeneous Graph Neural Network via Attribute Completion:https://dl.acm.org/doi/10.1145/3442381.3449914
- 屬性補全任務,創新點:包括拓撲嵌入的預學習和基于注意力機制的屬性補全
- Composite Graph Neural Networks for Molecular Property Prediction:doi:10.3390/ijms25126583
- 分類和回歸任務,創新點:復合圖神經網絡使用多個狀態更新網絡處理異構圖,每個網絡專用于特定節點類型
- 該文章具有回歸任務,提供了使用基于異構圖的GNN進行數值預測的理論與實踐證明
- Equivariant Line Graph Neural Network for Protein-Ligand Binding Affinity Prediction:doi:10.1109/JBHI.2024.3383245
- 結合親和力預測(數值預測),創新點:3d坐標復合體
- Improving airport arrival flow prediction considering heterogeneous and dynamic network dependencies:https://doi.org/10.1016/j.inffus.2023.101924
- 預測機場到達量,創新點:動態多圖神經網絡(卷積+注意力),時間感知注意力,重校準融合模塊
- Estimating package arrival time via heterogeneous hypergraph neural network:doi:10.1016/j.eswa.2023.121740
- 預測到達時間,創新點:利用超圖解決ETA預測問題
- A city-based PM2.5 forecasting framework using Spatially Attentive Cluster-based Graph Neural Network model:doi:10.1016/j.jclepro.2023.137036
- 短期PM2.5濃度,創新點:建模程序考慮了相關的氣象變量
- Sequence pre-training-based graph neural network for predicting lncRNA-miRNA associations:doi:10.1093/bib/bbad317
- 二分類任務
GNN領域論文
- Denoising AggrDegation of Graph Neural Networks by Using Principal Component Analysis:doi:10.1109/TII.2022.3156658
- 去噪任務,創新點:dropout+PCA降低運算成本
- Accelerating Distributed GNN Training by Codes:doi:10.1109/TPDS.2023.3295184
- 一般GNN任務,創新點:引入編碼技術降低GNN的通信開銷
- Dual-stream GNN fusion network for hyperspectral classification:doi:10.1007/s10489-023-04960-3
- 分類任務,創新點:使用子立方體作為輸入降低計算成本,應用了圖池化、局部引導模塊
- SCV-GNN: Sparse Compressed Vector-based Graph Neural Network Aggregation:doi:10.1109/TCAD.2023.3291672
- 一般GNN任務,創新點:針對聚合操作優化數據結構,使用Z-Morton排序推到基于數據局部性的計算排序和分區方案
- Edgeless-GNN: Unsupervised Representation Learning for Edgeless Nodes:doi:10.1109/TETC.2023.3292240
- 新節點嵌入
- Ha-gnn: a novel graph neural network based on hyperbolic attention:doi:10.1007/s00521-024-09689-9
- 分類任務,創新點:將圖結構映射至雙曲空間或者其切線空間(HGNN),HGNN+注意力 → \rightarrow →?HA-GNN
- Fast prediction and control of air core in hydrocyclone by machine learning to stabilize operations:doi:10.1016/j.jece.2023.111699
- 再現空氣剖面?創新點:CFD+GNN,數據平滑,損失函數調整以納入CFD的空氣核心信息;將GNN與隨機森林結合;將模型與遺傳算法結合
環境領域GNN論文
- Urban wind field prediction based on sparse sensors and physics-informed graph-assisted auto-encoder:doi:10.1111/mice.13147
- 風場方向預測,創新點:PINN+GNN+編碼解碼
- 不做考慮
- A two-stage CFD-GNN approach for efficient steady-state prediction of urban airflow and airborne contaminant dispersion:doi:10.1016/j.scs.2024.105607
- 風、陣風、污染物擴散預測,創新點:CFD提供初始狀態,gnn進行后續推理從而加速運算;使用具有$k-\epsilon $模型的SRANS為GNN提供信息豐富的初始狀態。
-
A new integrated prediction method of river level based on spatiotemporal correlation:doi:10.1007/s00477-023-02617-8
- 河流水位預測,創新點:
- pearson相關性分析,建立時間相關模型
- ChebNet(GNN)
- 利用AE-XGBoost重建時間特征并進行預測
- 河流水位預測,創新點:
-
Nationwide Air Pollution Forecasting with Heterogeneous Graph Neural Networks:doi:10.1145/3637492
- 空氣污染預測,創新點:寄,摘要沒寫,代碼沒有
-
A long-term prediction method for PM2.5 concentration based on spatiotemporal graph attention recurrent neural network and grey wolf optimization algorithm:doi:10.1016/j.jece.2023.111716
- PM2.5,創新點:GWO,GAT、GNN、GRU → \rightarrow →GART
-
PM2.5 forecasting under distribution shift: A graph learning approach:https://doi.org/10.1016/j.aiopen.2023.11.001
- https://github.com/yachuan/pm2.5forecasting
- https://github.com/yachuan/pm2.5forecasting