DAY 52 神經網絡調參指南
知識點回顧:
- 隨機種子
- 內參的初始化
- 神經網絡調參指南
- 參數的分類
- 調參的順序
- 各部分參數的調整心得
作業:對于day'41的簡單cnn,看看是否可以借助調參指南進一步提高精度。
day41的簡單CNN最后的結果,今天要做的是使用調參指南中的方法進一步提高精度
?
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 定義通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):"""通道注意力機制初始化參數:in_channels: 輸入特征圖的通道數ratio: 降維比例,用于減少參數量,默認為16"""super().__init__()# 全局平均池化,將每個通道的特征圖壓縮為1x1,保留通道間的平均值信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全局最大池化,將每個通道的特征圖壓縮為1x1,保留通道間的最顯著特征self.max_pool = nn.AdaptiveMaxPool2d(1)# 共享全連接層,用于學習通道間的關系# 先降維(除以ratio),再通過ReLU激活,最后升維回原始通道數self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False), # 降維層nn.ReLU(), # 非線性激活函數nn.Linear(in_channels // ratio, in_channels, bias=False) # 升維層)# Sigmoid函數將輸出映射到0-1之間,作為各通道的權重self.sigmoid = nn.Sigmoid()def forward(self, x):"""前向傳播函數參數:x: 輸入特征圖,形狀為 [batch_size, channels, height, width]返回:調整后的特征圖,通道權重已應用"""# 獲取輸入特征圖的維度信息,這是一種元組的解包寫法b, c, h, w = x.shape# 對平均池化結果進行處理:展平后通過全連接網絡avg_out = self.fc(self.avg_pool(x).view(b, c))# 對最大池化結果進行處理:展平后通過全連接網絡max_out = self.fc(self.max_pool(x).view(b, c))# 將平均池化和最大池化的結果相加并通過sigmoid函數得到通道權重attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)# 將注意力權重與原始特征相乘,增強重要通道,抑制不重要通道return x * attention #這個運算是pytorch的廣播機制## 空間注意力模塊
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):# 通道維度池化avg_out = torch.mean(x, dim=1, keepdim=True) # 平均池化:(B,1,H,W)max_out, _ = torch.max(x, dim=1, keepdim=True) # 最大池化:(B,1,H,W)pool_out = torch.cat([avg_out, max_out], dim=1) # 拼接:(B,2,H,W)attention = self.conv(pool_out) # 卷積提取空間特征return x * self.sigmoid(attention) # 特征與空間權重相乘## CBAM模塊
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 設置中文字體支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解決負號顯示問題# 檢查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用設備: {device}")# 1. 數據預處理
# 訓練集:使用多種數據增強方法提高模型泛化能力
train_transform = transforms.Compose([# 隨機裁剪圖像,從原圖中隨機截取32x32大小的區域transforms.RandomCrop(32, padding=4),# 隨機水平翻轉圖像(概率0.5)transforms.RandomHorizontalFlip(),# 隨機顏色抖動:亮度、對比度、飽和度和色調隨機變化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 隨機旋轉圖像(最大角度15度)transforms.RandomRotation(15),# 將PIL圖像或numpy數組轉換為張量transforms.ToTensor(),# 標準化處理:每個通道的均值和標準差,使數據分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 測試集:僅進行必要的標準化,保持數據原始特性,標準化不損失數據信息,可還原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加載CIFAR-10數據集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform # 使用增強后的預處理
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform # 測試集不使用增強
)# 3. 創建數據加載器
batch_size = 80
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定義CNN模型的定義(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()# 初始卷積層self.conv_init = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU())# 第一卷積塊(含CBAM)self.block1 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),CBAM(64) # 在卷積塊后添加CBAM)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)self.drop1 = nn.Dropout2d(0.1)# 第二卷積塊(含CBAM)self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), # stride=2降維nn.BatchNorm2d(128),nn.ReLU(),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(128),CBAM(128) # 在卷積塊后添加CBAM)self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)self.drop2 = nn.Dropout2d(0.2)# 第三卷積塊(含CBAM)self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(256),CBAM(256) # 在卷積塊后添加CBAM)self.pool3 = nn.AdaptiveAvgPool2d(4)self.drop3 = nn.Dropout2d(0.3)# 全連接層self.fc = nn.Sequential(nn.Linear(256 * 4 * 4, 512),nn.BatchNorm1d(512),nn.ReLU(),nn.Dropout(0.5),nn.Linear(512, 128),nn.BatchNorm1d(128),nn.ReLU(),nn.Dropout(0.3),nn.Linear(128, 10))def forward(self, x):x = self.conv_init(x)x = self.block1(x)x = self.pool1(x)x = self.drop1(x)x = self.block2(x)x = self.pool2(x)x = self.drop2(x)x = self.block3(x)x = self.pool3(x)x = self.drop3(x)x = x.view(-1, 256 * 4 * 4)x = self.fc(x)return x# 初始化模型
model = CNN()
model = model.to(device) # 將模型移至GPU(如果可用)
criterion = nn.CrossEntropyLoss() # 交叉熵損失函數
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam優化器# 引入學習率調度器,在訓練過程中動態調整學習率--訓練初期使用較大的 LR 快速降低損失,訓練后期使用較小的 LR 更精細地逼近全局最優解。
# 在每個 epoch 結束后,需要手動調用調度器來更新學習率,可以在訓練過程中調用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, # 指定要控制的優化器(這里是Adam)mode='min', # 監測的指標是"最小化"(如損失函數)patience=3, # 如果連續3個epoch指標沒有改善,才降低LRfactor=0.5 # 降低LR的比例(新LR = 舊LR × 0.5)
)
# 5. 訓練模型(記錄每個 iteration 的損失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train() # 設置為訓練模式# 記錄每個 iteration 的損失all_iter_losses = [] # 存儲所有 batch 的損失iter_indices = [] # 存儲 iteration 序號# 記錄每個 epoch 的準確率和損失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []# 早停相關參數best_test_acc = 0.0patience = 5 # 早停耐心值,5個epochcounter = 0 # 計數器,記錄連續未改進的epoch數early_stop = False # 早停標志for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device) # 移至GPUoptimizer.zero_grad() # 梯度清零output = model(data) # 前向傳播loss = criterion(output, target) # 計算損失loss.backward() # 反向傳播optimizer.step() # 更新參數# 記錄當前 iteration 的損失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 統計準確率和損失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100個批次打印一次訓練信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 單Batch損失: {iter_loss:.4f} | 累計平均損失: {running_loss/(batch_idx+1):.4f}')# 計算當前epoch的平均訓練損失和準確率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 測試階段model.eval() # 設置為評估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新學習率調度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 訓練準確率: {epoch_train_acc:.2f}% | 測試準確率: {epoch_test_acc:.2f}%')# 早停檢查if epoch_test_acc > best_test_acc:best_test_acc = epoch_test_acccounter = 0# 保存最佳模型(可選)torch.save(model.state_dict(), 'best_model.pth')print(f"找到更好的模型,準確率: {best_test_acc:.2f}%,已保存")else:counter += 1print(f"早停計數器: {counter}/{patience}")if counter >= patience:print(f"早停觸發!連續 {patience} 個epoch測試準確率未提高")early_stop = True# 如果觸發早停,跳出訓練循環if early_stop:print(f"訓練在第 {epoch+1} 個epoch提前結束")break# 繪制所有 iteration 的損失曲線plot_iter_losses(all_iter_losses, iter_indices)# 繪制每個 epoch 的準確率和損失曲線plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc # 返回最終測試準確率# 6. 繪制每個 iteration 的損失曲線
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序號)')plt.ylabel('損失值')plt.title('每個 Iteration 的訓練損失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 繪制每個 epoch 的準確率和損失曲線
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 繪制準確率曲線plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='訓練準確率')plt.plot(epochs, test_acc, 'r-', label='測試準確率')plt.xlabel('Epoch')plt.ylabel('準確率 (%)')plt.title('訓練和測試準確率')plt.legend()plt.grid(True)# 繪制損失曲線plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='訓練損失')plt.plot(epochs, test_loss, 'r-', label='測試損失')plt.xlabel('Epoch')plt.ylabel('損失值')plt.title('訓練和測試損失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 執行訓練和測試
epochs = 40 # 增加訓練輪次以獲得更好效果
print("開始使用CNN訓練模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"訓練完成!最終測試準確率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存為: cifar10_cnn_model.pth")
訓練完成!最終測試準確率: 87.04%
@浙大疏精行?