1.RNN從零開始實現
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#8.3.4節
#batch_size:每個小批量中子序列樣本的數目,num_steps:每個子序列中預定義的時間步數
#load_data_time_machine函數:返回數據迭代器和詞表
batch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)#此向量是原始詞元的一個獨熱向量。 索引為0和2的獨熱向量如下所示:
F.one_hot(torch.tensor([0,2]),len(vocab))#8.5.1獨熱編碼
#one_hot函數將這樣一個小批量數據轉換成三維張量, 張量的最后一個維度等于詞表大小(len(vocab))。
#經常轉換輸入的維度,以便獲得形狀為 (時間步數,批量大小,詞表大小)的輸出
X = torch.arange(10).reshape((2,5))
F.one_hot(X.T,28).shape#8.5.2初始化循環神經網絡模型的模型參數。
# 隱藏單元數num_hiddens是一個可調的超參數。
#當訓練語言模型時,輸入和輸出來自相同的詞表。因此,它們具有相同的維度,即詞表的大小。
def get_params(vocab_size,num_hiddens,device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape,device=device)*0.01#隱藏層參數W_xh = normal((num_inputs,num_hiddens))W_hh = normal((num_hiddens,num_hiddens))b_h = torch.zeros(num_hiddens,device=device)#輸出層參數W_hq = normal((num_hiddens,num_outputs))b_q = torch.zeros(num_outputs,device=device)#附加梯度params = [W_xh,W_hh,b_h,W_hq,b_q]for param in params:param.requires_grad_(True)return params#8.5.3循環神經網絡模型
#init_rnn_state函數在初始化時返回隱狀態,返回一個張量,全用0填充,形狀為(批量大小,隱藏單元數)
def init_rnn_state(batch_size,num_hiddens,device):return (torch.zeros((batch_size,num_hiddens),device),)
#rnn函數定義了如何在一個時間步內計算隱狀態和輸出。
#循環神經網絡模型通過inputs最外層的維度實現循環,以便逐時間步更新小批量數據的隱狀態.
def rnn(inputs,state,params):#input的形狀:(時間步數量,批量大小,詞表大小)W_xh,W_hh,b_h,W_hq,b_q = paramsH,=stateoutputs = []#X的形狀:(批量大小,詞表大小)for X in inputs:H = torch.tanh(torch.mm(X,W_xh)+torch.mm(H,W_hh)+b_h)Y = torch.mm(H,W_hq) + b_qoutputs.append(Y)return torch.cat(outputs,dim=0),(H,)
#定義了所有需要的函數之后,創建類來包裝這些函數,并存儲從零開始實現的循環神經網絡模型的參數。
class RNNModelScratch:#@save"""從零開始實現的循環神經網絡模型"""def __init__(self,vocab_size,num_hiddens,device,get_params,init_state,forward_fn):self.vocab_size,self.num_hiddens = vocab_size,num_hiddensself.params = get_params(vocab_size,num_hiddens,device)self.init_state,self.forward_fn = init_state,forward_fndef __call__(self, X, state):X = F.one_hot(X.T,self.vocab_size).type(torch.float32)return self.forward_fn(X,state,self.params)def begin_state(self,batch_size,device):return self.init_state(batch_size,self.num_hiddens,device)#檢查輸出是否具有正確的形狀。例如,隱狀態的維數是否保持不變。
num_hiddens = 512
net = RNNModelScratch(len(vocab),num_hiddens,d2l.try_gpu(),get_params,init_rnn_state,rnn)
state = net.begin_state(X.shape[0],d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()),state)
Y.shape,len(new_state),new_state[0].shape
#輸出形狀是(時間步數times,批量大小,詞表大小),而隱狀態形狀保持不變,即(批量大小,隱藏單元數)#8.5.4.預測
#首先定義預測函數來生成prefix之后的新字符,其中的prefix是一個用戶提供的包含多個字符的字符串
#循環遍歷prefix中的開始字符時,不斷將隱狀態傳遞到下一個時間步,但不生成任何輸出(預熱(warm-up)期)
def predict_ch8(prefix,num_preds,net,vocab,device):#@save"""在prefix后面生成新字符"""state = net.begin_state(batch_size=1,device=device)outputs = [vocab[prefix[0]]]get_input = lambda : torch.tensor([outputs[-1]],device=device).reshape((1,1))for y in prefix[1:]: #預熱期_,state = net(get_input(),state)outputs.append(vocab[y])for _ in range(num_preds): #預測num_preds步y,state = net(get_input(),state)outputs.append(int(y.argmax(dim=1).reshape(1)))return ''.join([vocab.idx_to_token[i] for i in outputs])
#測試predict_ch8函數。將前綴指定為time traveller,并生成10個后續字符。鑒于還沒訓練網絡,會生成荒謬的預測結果。
predict_ch8('time traveller',10,net,vocab,d2l.try_gpu())#8.5.5. 梯度截斷
def grad_clipping(net,theta): #@save"""梯度截斷"""if isinstance(net,nn.Module):params = [p for p in net.parameters() if p.requires_grad]else:params = net.paramsnorm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))if norm > theta:for param in params:param.grad[:] *= theta / norm#8.5.6.訓練
#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):"""訓練網絡一個迭代周期(定義見第8章)"""state, timer = None, d2l.Timer()metric = d2l.Accumulator(2) # 訓練損失之和,詞元數量for X, Y in train_iter:if state is None or use_random_iter:# 在第一次迭代或使用隨機抽樣時初始化statestate = net.begin_state(batch_size=X.shape[0], device=device)else:if isinstance(net, nn.Module) and not isinstance(state, tuple):# state對于nn.GRU是個張量state.detach_()else:# state對于nn.LSTM或對于我們從零開始實現的模型是個張量for s in state:s.detach_()y = Y.T.reshape(-1)X, y = X.to(device), y.to(device)y_hat, state = net(X, state)l = loss(y_hat, y.long()).mean()if isinstance(updater, torch.optim.Optimizer):updater.zero_grad()l.backward()grad_clipping(net, 1)updater.step()else:l.backward()grad_clipping(net, 1)# 因為已經調用了mean函數updater(batch_size=1)metric.add(l * y.numel(), y.numel())return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,use_random_iter=False):"""訓練模型(定義見第8章)"""loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])# 初始化if isinstance(net, nn.Module):updater = torch.optim.SGD(net.parameters(), lr)else:updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)# 訓練和預測for epoch in range(num_epochs):ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)if (epoch + 1) % 10 == 0:print(predict('time traveller'))animator.add(epoch + 1, [ppl])print(f'困惑度 {ppl:.1f}, {speed:.1f} 詞元/秒 {str(device)}')print(predict('time traveller'))print(predict('traveller'))#因為數據集中只使用了10000個詞元,所以模型需要更多的迭代周期來更好地收斂。
num_epochs,lr = 500,1
train_ch8(net,train_iter,vocab,lr,num_epochs,d2l.try_gpu())#檢查一下使用隨機抽樣方法的結果
net = RNNModelScratch(len(vocab),num_hiddens,d2l.try_gpu(),get_params,init_rnn_state,rnn)
train_ch8(net,train_iter,vocab,lr,num_epochs,d2l.try_gpu(),use_random_iter=True)
Traceback (most recent call last):
? File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 83, in <module>
? ? state = net.begin_state(X.shape[0],d2l.try_gpu())
? File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 77, in begin_state
? ? return self.init_state(batch_size,self.num_hiddens,device)
? File "F:\doctoral_learning\deep_learning_test\Limu_allTest\Rnn-net\main.py", line 49, in init_rnn_state
? ? return (torch.zeros((batch_size,num_hiddens),device),)
TypeError: zeros() received an invalid combination of arguments - got (tuple, torch.device), but expected one of:
?* (tuple of ints size, *, tuple of names names, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
?* (tuple of ints size, *, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
太麻煩了,不改了。
2.RNN的簡潔實現
#8.6.循環神經網絡的簡潔實現
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lbatch_size,num_steps = 32,35
train_iter,vocab = d2l.load_data_time_machine(batch_size,num_steps)#構造一個具有256個隱藏單元的單隱藏層的循環神經網絡層rnn_layer
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab),num_hiddens)
#使用張量來初始化隱狀態,它的形狀是(隱藏層數,批量大小,隱藏單元數)。
state = torch.zeros((1,batch_size,num_hiddens))
print(state.shape)
#通過一個隱狀態和一個輸入,我們就可以用更新后的隱狀態計算輸出。
#rnn_layer的“輸出”(Y)不涉及輸出層的計算:指每個時間步的隱狀態,這些隱狀態可以用作后續輸出層的輸入。
X = torch.rand(size=(num_steps,batch_size,len(vocab)))
Y,state_new = rnn_layer(X,state)
print(Y.shape,state_new.shape)
#與 8.5節類似,為一個完整的循環神經網絡模型定義了一個RNNModel類。
#注意,rnn_layer只包含隱藏的循環層,還需要創建一個單獨的輸出層。
class RNNModel(nn.Module):"""循環神經網絡模型"""def __init__(self,run_layer,vocab_size,**kwargs):super(RNNModel,self).__init__(**kwargs)self.rnn = rnn_layerself.vocab_size = vocab_sizeself.num_hiddens = self.rnn.hidden_size#如果RNN是雙向的(之后將介紹),num_directions應該是2,否則應該是1if not self.rnn.bidirectional:self.num_directions = 1self.linear = nn.Linear(self.num_hiddens ,self.vocab_size)else:self.num_directions = 2self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)def forward(self,inputs,state):X = F.one_hot(inputs.T.long(),self.vocab_size)X = X.to(torch.float32)Y,state = self.rnn(X,state)#全連接層首先將Y的形狀改為(時間步數*批量大小,隱藏單元數)output = self.linear(Y.reshape((-1,Y.shape[-1])))return output,statedef begin_state(self,device,batch_size=1):if not isinstance(self.rnn,nn.LSTM):#nn.GRU以張量作為隱狀態return torch.zeros((self.num_directions * self.rnn.num_layers,batch_size,self.num_hiddens),device = device)else:#nn.LSTM以元組作為隱狀態return (torch.zeros((self.num_directions * self.rnn.num_layers,batch_size,self.num_hiddens),device = device),torch.zeros((self.num_directions * self.rnn.num_layers,batch_size,self.num_hiddens),device = device))
#在訓練模型之前,基于一個具有隨機權重的模型進行預測。
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
print(d2l.predict_ch8('time traveller',10,net,vocab,device))
#這種模型根本不能輸出好的結果。接下來,使用 8.5節定義的超參數調用train_ch8,并且使用高級API訓練模型。
num_epochs,lr = 500,1
print(d2l.train_ch8(net,train_iter,vocab,lr,num_epochs,device))
d2l.plt.show()