DAY 44 預訓練模型
知識點回顧:
- 預訓練的概念
- 常見的分類預訓練模型
- 圖像預訓練模型的發展史
- 預訓練的策略
- 預訓練代碼實戰:resnet18
作業:
- 嘗試在cifar10對比如下其他的預訓練模型,觀察差異,盡可能和他人選擇的不同
- 嘗試通過ctrl進入resnet的內部,觀察殘差究竟是什么
一、預訓練的概念
我們之前在訓練中發現,準確率最開始隨著epoch的增加而增加。隨著循環的更新,參數在不斷發生更新。
所以參數的初始值對訓練結果有很大的影響:
1. 如果最開始的初始值比較好,后續訓練輪數就會少很多
2. 很有可能陷入局部最優值,不同的初始值可能導致陷入不同的局部最優值
我們之前在訓練中發現,準確率最開始隨著epoch的增加而增加。隨著循環的更新,參數在不斷發生更新。
所以參數的初始值對訓練結果有很大的影響:
1. 如果最開始的初始值比較好,后續訓練輪數就會少很多
2. 很有可能陷入局部最優值,不同的初始值可能導致陷入不同的局部最優值
現在再來看下之前一直用的cifar10數據集,他是不是就很明顯不適合作為預訓練數據集?
1. 規模過小:僅 10 萬張圖像,且尺寸小(32x32),無法支撐復雜模型學習通用視覺特征;
2. 類別單一:僅 10 類(飛機、汽車等),泛化能力有限;
這里給大家介紹一個常常用來做預訓練的數據集,ImageNet,ImageNet 1000 個類別,有 1.2 億張圖像,尺寸 224x224,數據集大小 1.4G。
三、常見的分類預訓練模型介紹
3.1 預訓練模型的訓練策略
那么什么模型會被選為預訓練模型呢?比如一些調參后表現很好的cnn神經網絡(固定的神經元個數+固定的層數等)。
所以調用預訓練模型做微調,本質就是 用這些固定的結構+之前訓練好的參數 接著訓練
所以需要找到預訓練的模型結構并且加載模型參數
相較于之前用自己定義的模型有以下幾個注意點
1. 需要調用預訓練模型和加載權重
2. 需要resize 圖片讓其可以適配模型
3. 需要修改最后的全連接層以適應數據集
其中,訓練過程中,為了不破壞最開始的特征提取器的參數,最開始往往先凍結住特征提取器的參數,然后訓練全連接層,大約在5-10個epoch后解凍訓練。
主要做特征提取的部分叫做backbone骨干網絡;負責融合提取的特征的部分叫做Featue Pyramid Network(FPN);負責輸出的預測部分的叫做Head。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt# 設置中文字體支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解決負號顯示問題# 檢查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用設備: {device}")# 1. 數據預處理(訓練集增強,測試集標準化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加載CIFAR-10數據集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 創建數據加載器(可調整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 訓練函數(支持學習率調度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train() # 設置為訓練模式train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 記錄Iteration損失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 統計訓練指標running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印進度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 單Batch損失: {iter_loss:.4f}")# 計算 epoch 級指標epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 測試階段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 記錄歷史數據train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新學習率調度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 結果print(f"Epoch {epoch+1} 完成 | 訓練損失: {epoch_train_loss:.4f} "f"| 訓練準確率: {epoch_train_acc:.2f}% | 測試準確率: {epoch_test_acc:.2f}%")# 繪制損失和準確率曲線plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc # 返回最終測試準確率# 5. 繪制Iteration損失曲線
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序號)')plt.ylabel('損失值')plt.title('訓練過程中的Iteration損失變化')plt.grid(True)plt.show()# 6. 繪制Epoch級指標曲線
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 準確率曲線plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='訓練準確率')plt.plot(epochs, test_acc, 'r-', label='測試準確率')plt.xlabel('Epoch')plt.ylabel('準確率 (%)')plt.title('準確率隨Epoch變化')plt.legend()plt.grid(True)# 損失曲線plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='訓練損失')plt.plot(epochs, test_loss, 'r-', label='測試損失')plt.xlabel('Epoch')plt.ylabel('損失值')plt.title('損失值隨Epoch變化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()
# 導入ResNet模型
from torchvision.models import resnet18# 定義ResNet18模型(支持預訓練權重加載)
def create_resnet18(pretrained=True, num_classes=10):# 加載預訓練模型(ImageNet權重)model = resnet18(pretrained=pretrained)# 修改最后一層全連接層,適配CIFAR-10的10分類任務in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)# 將模型轉移到指定設備(CPU/GPU)model = model.to(device)return model
# 創建ResNet18模型(加載ImageNet預訓練權重,不進行微調)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval() # 設置為推理模式# 測試單張圖片(示例)
from torchvision import utils# 從測試數據集中獲取一張圖片
dataiter = iter(test_loader)
images, labels = next(dataiter)
images = images[:1].to(device) # 取第1張圖片# 前向傳播
with torch.no_grad():outputs = model(images)_, predicted = torch.max(outputs.data, 1)# 顯示圖片和預測結果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"預測類別: {predicted.item()}")
plt.axis('off')
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os# 設置中文字體支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解決負號顯示問題# 檢查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用設備: {device}")# 1. 數據預處理(訓練集增強,測試集標準化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加載CIFAR-10數據集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 創建數據加載器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定義ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):model = models.resnet18(pretrained=pretrained)# 修改最后一層全連接層in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)return model.to(device)# 5. 凍結/解凍模型層的函數
def freeze_model(model, freeze=True):"""凍結或解凍模型的卷積層參數"""# 凍結/解凍除fc層外的所有參數for name, param in model.named_parameters():if 'fc' not in name:param.requires_grad = not freeze# 打印凍結狀態frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)total_params = sum(p.numel() for p in model.parameters())if freeze:print(f"已凍結模型卷積層參數 ({frozen_params}/{total_params} 參數)")else:print(f"已解凍模型所有參數 ({total_params}/{total_params} 參數可訓練)")return model# 6. 訓練函數(支持階段式訓練)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):"""前freeze_epochs輪凍結卷積層,之后解凍所有層進行訓練"""train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []# 初始凍結卷積層if freeze_epochs > 0:model = freeze_model(model, freeze=True)for epoch in range(epochs):# 解凍控制:在指定輪次后解凍所有層if epoch == freeze_epochs:model = freeze_model(model, freeze=False)# 解凍后調整優化器(可選)optimizer.param_groups[0]['lr'] = 1e-4 # 降低學習率防止過擬合model.train() # 設置為訓練模式running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 記錄Iteration損失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 統計訓練指標running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印進度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 單Batch損失: {iter_loss:.4f}")# 計算 epoch 級指標epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 測試階段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 記錄歷史數據train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新學習率調度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 結果print(f"Epoch {epoch+1} 完成 | 訓練損失: {epoch_train_loss:.4f} "f"| 訓練準確率: {epoch_train_acc:.2f}% | 測試準確率: {epoch_test_acc:.2f}%")# 繪制損失和準確率曲線plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc # 返回最終測試準確率# 7. 繪制Iteration損失曲線
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序號)')plt.ylabel('損失值')plt.title('訓練過程中的Iteration損失變化')plt.grid(True)plt.show()# 8. 繪制Epoch級指標曲線
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 準確率曲線plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='訓練準確率')plt.plot(epochs, test_acc, 'r-', label='測試準確率')plt.xlabel('Epoch')plt.ylabel('準確率 (%)')plt.title('準確率隨Epoch變化')plt.legend()plt.grid(True)# 損失曲線plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='訓練損失')plt.plot(epochs, test_loss, 'r-', label='測試損失')plt.xlabel('Epoch')plt.ylabel('損失值')plt.title('損失值隨Epoch變化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 主函數:訓練模型
def main():# 參數設置epochs = 40 # 總訓練輪次freeze_epochs = 5 # 凍結卷積層的輪次learning_rate = 1e-3 # 初始學習率weight_decay = 1e-4 # 權重衰減# 創建ResNet18模型(加載預訓練權重)model = create_resnet18(pretrained=True, num_classes=10)# 定義優化器和損失函數optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)criterion = nn.CrossEntropyLoss()# 定義學習率調度器scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2, verbose=True)# 開始訓練(前5輪凍結卷積層,之后解凍)final_accuracy = train_with_freeze_schedule(model=model,train_loader=train_loader,test_loader=test_loader,criterion=criterion,optimizer=optimizer,scheduler=scheduler,device=device,epochs=epochs,freeze_epochs=freeze_epochs)print(f"訓練完成!最終測試準確率: {final_accuracy:.2f}%")# # 保存模型# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')# print("模型已保存至: resnet18_cifar10_finetuned.pth")if __name__ == "__main__":main()
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import resnet18, densenet121
from torchsummary import summary # 查看模型結構
import matplotlib.pyplot as plt# 設備配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# CIFAR10 數據預處理
transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)class DenseNetC10(nn.Module):def __init__(self, num_classes=10):super(DenseNetC10, self).__init__()# 壓縮原版 DenseNet121,減少層數和通道數self.features = nn.Sequential(nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(32),nn.ReLU(inplace=True),# 3個密集塊,每個塊含3層self._make_dense_block(32, 32, num_layers=3),self._make_dense_block(64, 32, num_layers=3),self._make_dense_block(96, 32, num_layers=3),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)))self.classifier = nn.Linear(128, num_classes)def _make_dense_block(self, in_channels, growth_rate, num_layers):layers = []for _ in range(num_layers):layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))layers.append(nn.BatchNorm2d(growth_rate))layers.append(nn.ReLU(inplace=True))in_channels += growth_ratereturn nn.Sequential(*layers)def forward(self, x):features = self.features(x)out = features.view(features.size(0), -1)out = self.classifier(out)return out# 初始化模型
models = {'DenseNet-C10': DenseNetC10().to(device),'MobileViT': MobileViT().to(device),'RepVGG': RepVGG().to(device),'ResNet18': resnet18(pretrained=False, num_classes=10).to(device) # 對比基準
}# 訓練超參數
criterion = nn.CrossEntropyLoss()
accuracies = {}for model_name, model in models.items():print(f'\nTraining {model_name}...')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)best_acc = 0.0for epoch in range(1, 201):train_model(model, criterion, optimizer, epoch)acc = test_model(model, criterion)if acc > best_acc:best_acc = accaccuracies[model_name] = best_acc# 打印對比結果
print('\nFinal Accuracy Comparison:')
for name, acc in accuracies.items():print(f'{name}: {acc:.2f}%')def visualize_residual(model, data):# 注冊鉤子函數捕捉殘差塊輸出residuals = []def hook(module, input, output):residual = output - input[0] # 殘差 = 輸出 - 輸入residuals.append(residual.detach().cpu())# 選擇ResNet18的第一個殘差塊(layer1[0])model.layer1[0].register_forward_hook(hook)with torch.no_grad():model(data.to(device))# 可視化殘差圖(取第一個樣本的第一個通道)residual = residuals[0][0, 0, :, :] # 形狀(32,32)plt.figure(figsize=(6, 4))plt.subplot(1, 2, 1)plt.imshow(data[0].permute(1, 2, 0)) # 原始圖像plt.title('Input Image')plt.subplot(1, 2, 2)plt.imshow(residual, cmap='coolwarm') # 殘差熱力圖plt.title('Residual Map')plt.colorbar()plt.show()# 測試殘差可視化(用ResNet18和測試集中的一張圖像)
resnet_model = resnet18(num_classes=10).to(device)
data, _ = next(iter(test_loader))
visualize_residual(resnet_model, data[:1]) # 取第一個樣本
@浙大疏錦行