1.基礎函數
import torch
a = torch.rand(2,2)
print("a:\n",a)
print('########################')
print("平均值:\n",torch.mean(a,dim=0))
print("總和:\n",torch.sum(a,dim=0))
print("所有元素的積:\n",torch.prod(a,dim=0))
print("最大值:\n",torch.argmax(a,dim=0))
print("最小值:\n",torch.argmin(a,dim=0))
print("標準差:\n",torch.std(a,dim=0))
print("方差:\n",torch.var(a,dim=0))
print("中位數:\n",torch.median(a,dim=0))
print("眾數:\n",torch.mode(a,dim=0))
2.直方圖
import torch
a = torch.rand(2,2) * 10
print("a:\n",a)
print('########################')
# 6為直方圖的個數,0為最小值,0為最大值
print(torch.histc(a,6,0,0))
3.頻數:輸出結果為1~9出現的次數
import torch
a = torch.randint(0,10,[10])
print("a:\n",a)
print('########################')
print(torch.bincount(a))
?4.隨機抽樣
- 定義隨機種子:torch.manual_seed()
- 定義隨機數滿足的分布:torch.normal()
import torch
torch.manual_seed(1)
mean = torch.rand(1,2)
std = torch.rand(1,2)
a = torch.normal(mean,std)
print(a)
5.范數運算?
- 用來度量某個向量空間(或矩陣)中的每個向量的長度或大小
- 范數定義需要滿足的條件
- 非負性
- 齊次性
- 三角不等式
- 常用范數有:0范數、1范數、2范數、p范數、核范數
- torch.dist(input,other,p)
- 計算兩個tensor的p范數
- torch.dist(input,other,p)
import torch
a = torch.rand(1,1)
b = torch.rand(1,1)
print("a:\n",a)
print("b:\n",b)
print('l1:\n',torch.dist(a,b,p=1))
print('l2:\n',torch.dist(a,b,p=2))
print('l3:\n',torch.dist(a,b,p=3))
- torch.norm()
- 計算某個tensor的范數
import torch
a = torch.rand(1,1)
print("a:\n",a)
print('l1:\n',torch.norm(a,p=1))
print('l2:\n',torch.norm(a))
print('l3:\n',torch.norm(a,p=3))
print('l3:\n',torch.norm(a,p='fro')) #核范數
知識點為聽課總結筆記,課程為B站“2025最新整合!公認B站講解最強【PyTorch】入門到進階教程,從環境配置到算法原理再到代碼實戰逐一解讀,比自學效果強得多!”:2025最新整合!公認B站講解最強【PyTorch】入門到進階教程,從環境配置到算法原理再到代碼實戰逐一解讀,比自學效果強得多!_嗶哩嗶哩_bilibili