1.使用tips數據集,創建一個展示不同時間段(午餐/晚餐)賬單總額分布的箱線圖
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdsns.set_style("darkgrid")
plt.rcParams["axes.unicode_minus"] = Falsetips = pd.read_csv("./tips.csv")
sns.boxplot(data=tips,x='time',y='total_bill')plt.title('Distribution of Total Bill by Time of Day (Lunch/Dinner)')
plt.show()
運行結果:
2.?使用iris數據集,繪制花萼長度與花瓣長度的散點圖,并按不同種類著色
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdsns.set_theme()iris = pd.read_csv("./iris.csv")sns.scatterplot(data=iris,x="sepal_length",y='petal_length',hue='species')plt.title('Sepal Length vs Petal Length by Species')
plt.show()
運行結果:
3.創建航班乘客數據的月度變化折線圖,按年份著色
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdsns.set_style("darkgrid")
plt.rcParams["axes.unicode_minus"] = Falseflights = pd.read_csv("./flights.csv")
sns.lineplot(data=flights,x='month',y='passengers',hue='year',)plt.title('Monthly Flight Passengers with Yearly Trends')
plt.xticks(rotation=45) # 旋轉月份標簽以便顯示清楚
plt.tight_layout()
plt.show()
運行結果:
4.使用diamonds數據集(需從seaborn導入),繪制克拉與價格的散點圖,并按切工質量著色
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdsns.set_style("darkgrid")
plt.rcParams["axes.unicode_minus"] = Falsediamonds = pd.read_csv("./diamonds.csv")
sns.scatterplot(data=diamonds,x='carat',y='price',hue='cut', )plt.title('Carat vs Price by Cut Quality')
plt.legend(title='Cut', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
運行結果:
5.使用penguins數據集,繪制企鵝不同物種的喙長與喙深的聯合分布圖
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pdsns.set_style("darkgrid")
plt.rcParams["axes.unicode_minus"] = Falsepenguins = pd.read_csv("./penguins.csv")
sns.jointplot(data=penguins,x='bill_length_mm',y='bill_depth_mm',kind='scatter',hue='species')plt.show()
運行結果: