路徑類dp
1.矩陣的最小路徑和_牛客題霸_牛客網
#include<iostream>
#include<cstring>
using namespace std;const int N = 510;
int f[N][N];
int n, m;int main()
{cin >> n >> m;memset(f, 0x3f3f3f, sizeof(f));f[0][1] = 0;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){int x; cin >> x;f[i][j] = min(f[i - 1][j], f[i][j - 1]) + x;}}cout << f[n][m];return 0;
}
2.「木」迷霧森林
#include<iostream>using namespace std;const int N = 3e3 + 10;
int n, m;
int a[N][N];
int f[N][N];//到i,j位置的方案數int main()
{cin >> n >> m;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){scanf("%d",& a[i][j]);}}//初始化f[n][0] = 1;for (int i = n; i >= 1; i--){for (int j = 1; j <= m; j++){if (a[i][j] == 1)continue;f[i][j] = (f[i + 1][j] + f[i][j - 1])%2333;}}cout << f[1][m] << endl;return 0;
}
3.P1002 [NOIP 2002 普及組] 過河卒 - 洛谷
標記馬的位置
#include<iostream>using namespace std;typedef long long LL;//統計結果是一個階乘,很大,要使用long long ,不然的話過不了int n, m, a, b;
const int N = 25;
LL f[N][N];//記錄從1 1到 i j的路徑的條數LL ret = 0;
//實現check函數
bool check(int i, int j)
{if (i == a && j == b)return true;//正好在馬的位置else if (abs(i - a) + abs(j - b) == 3 && i != a && j != b)return true;//距離3,并且不再十字線上return false;
} int main()
{cin >> n >> m >> a >> b;//給出的是從0 0 開始的,而我們要的是從1 1開始的n++, m++, a++, b++;//初始化f[0][1] = 1;for (int i = 1; i <= n; i++){for (int j = 1; j <= m; j++){if (check(i, j))continue;//檢測是否會被馬吃到f[i][j] = f[i - 1][j] + f[i][j - 1];}}cout << f[n][m] << endl;return 0;
}
?4.P1004 [NOIP 2000 提高組] 方格取數 - 洛谷
#include<iostream>using namespace std;const int N = 15;
int f[N * 2][N][N];//兩個人同時出發,走相同的路徑長度s,一個在 i1 ,另一個在i2,此時的最大路徑和
int a[N][N];//記錄數據int main()
{int n; cin >> n;int x, y, w; while (cin >> x >> y >> w,x)//輸入x,y,z知道為0 ,就停止輸入{a[x][y] = w;}//遍歷for (int s = 2; s <= 2 * n; s++)//路徑長度在 2~2*n之間,從1 1開始。{for (int i1 = 1; i1 <= n; i1++)//遍歷i1{for (int i2 = 1; i2 <= n; i2++)//遍歷i2{int j1 = s - i1;//根據s算出縱坐標int j2 = s - i2;//根據s算出縱坐標if (j1 <= 0 || j1 > n || j2 <= 0 || j2 > n)//判斷縱坐標是否出界{continue;}int t = f[s - 1][i1][i2];//左左t = max(t, f[s - 1][i1 - 1][i2]);//上左t = max(t, f[s - 1][i1][i2 - 1]);//左上t = max(t, f[s - 1][i1 - 1][i2 - 1]);//上上if (i1 == i2)//是否在同一坐標,在,加一個即可f[s][i1][i2] = t + a[i1][j1];else//不再,兩個都要加f[s][i1][i2] = t + a[i1][j1]+a[i2][j2];}}}cout << f[n * 2][n][n] << endl;return 0;
}