設有非等腰的 △ A B C \triangle ABC △ABC, O O O 和 I I I 分別為外心和內心. 在邊 A C AC AC, A B AB AB 上分別存在兩點 E E E 和 F F F, 使得 C D + C E = A B CD+CE=AB CD+CE=AB, B F + B D = A C BF+BD=AC BF+BD=AC. 設 ( B D F ) (BDF) (BDF) 和 ( C D E ) (CDE) (CDE) 交于 D D D, P P P. 求證: O I = O P OI=OP OI=OP.
證明:
不妨設 C > B C>B C>B
由密克定理可知 A A A, F F F, P P P, E E E 共圓.
設射線 A I AI AI, B I BI BI, C I CI CI 除端點外分別交 ( A E F ) (AEF) (AEF), ( B F D ) (BFD) (BFD), ( C D E ) (CDE) (CDE) 于 X X X, Y Y Y, Z Z Z.
先證明 I I I, X X X, Y Y Y, Z Z Z 共于一圓, 且該圓的圓心為 O O O.
根據三弦定理有, 這等價于:
I X sin ? ( π 2 ? A 2 ) + I Y sin ? ( π 2 ? B 2 ) = I Z sin ? ( π 2 + C 2 ) IX \sin (\frac{\pi}{2}-\frac{A}{2})+IY \sin (\frac{\pi}{2}-\frac{B}{2})=IZ \sin (\frac{\pi}{2}+\frac{C}{2}) IXsin(2π??2A?)+IYsin(2π??2B?)=IZsin(2π?+2C?)
整理得:
I X cos ? ( A 2 ) + I Y cos ? ( B 2 ) + I Z cos ? ( C 2 ) = 0 IX \cos (\frac{A}{2})+IY \cos (\frac{B}{2})+IZ \cos (\frac{C}{2})=0 IXcos(2A?)+IYcos(2B?)+IZcos(2C?)=0
根據三弦定理有:
( B D + B F ) sin ? B 2 = B Y sin ? B = > B Y = b 2 cos ? B 2 (BD+BF)\sin \frac{B}{2}=BY \sin B=>BY=\frac{b}{2\cos \frac{B}{2}} (BD+BF)sin2B?=BYsinB=>BY=2cos2B?b?
類似地, 可以證明 A X = a 2 cos ? A 2 AX=\frac{a}{2\cos \frac{A}{2}} AX=2cos2A?a?, C Z = c 2 cos ? C 2 CZ=\frac{c}{2\cos \frac{C}{2}} CZ=2cos2C?c?
所以
I Y cos ? ( B 2 ) = ( I B ? B Y ) cos ? ( B 2 ) = I B cos ? B 2 ? b 2 = ( p ? b ) ? b 2 IY\cos (\frac{B}{2})=(IB-BY)\cos (\frac{B}{2})=IB\cos \frac{B}{2}-\frac{b}{2}=(p-b)-\frac{b}{2} IYcos(2B?)=(IB?BY)cos(2B?)=IBcos2B??2b?=(p?b)?2b?
類似地, 可以證明 I X cos ? ( A 2 ) = ( p ? a ) ? a 2 IX\cos (\frac{A}{2})=(p-a)-\frac{a}{2} IXcos(2A?)=(p?a)?2a?
I Z cos ? ( C 2 ) = ( p ? c ) ? c 2 IZ \cos(\frac{C}{2})=(p-c)-\frac{c}{2} IZcos(2C?)=(p?c)?2c?
所以 I X cos ? ( A 2 ) + I Y cos ? ( B 2 ) + I Z cos ? ( C 2 ) = 3 p ? ( a + b + c ) ? a + b + c 2 = 0 IX \cos (\frac{A}{2})+IY \cos (\frac{B}{2})+IZ \cos (\frac{C}{2}) = 3p - (a+b+c) - \frac{a+b+c}{2}=0 IXcos(2A?)+IYcos(2B?)+IZcos(2C?)=3p?(a+b+c)?2a+b+c?=0
所以 I I I, X X X, Y Y Y, Z Z Z 共圓.
易知若 I X = 2 ( O A cos ? ∠ O A I ? A X ) IX=2(OA \cos \angle OAI-AX) IX=2(OAcos∠OAI?AX), 則 O I = O X OI=OX OI=OX
易知 ∠ O A I = C ? B 2 \angle OAI = \frac{C-B}{2} ∠OAI=2C?B?,
2 O A cos ? ∠ O A I cos ? ( A 2 ) = 2 O A cos ? C ? B 2 sin ? B + C 2 = O A ( sin ? C ? sin ? B ) = c ? b 2 OA\cos \angle OAI \cos (\frac{A}{2})=2OA \cos \frac{C-B}{2} \sin \frac{B+C}{2}=OA (\sin C - \sin B)=\frac{c-b}{2} OAcos∠OAIcos(2A?)=2OAcos2C?B?sin2B+C?=OA(sinC?sinB)=2c?b?
2 A X cos ? A 2 = a AX \cos \frac{A}{2}=a AXcos2A?=a
I X cos ? A 2 = p ? 3 a 2 IX\cos \frac{A}{2}=p-\frac{3a}{2} IXcos2A?=p?23a?
I X cos ? A 2 ? 2 IX\cos \frac{A}{2}-2 IXcos2A??2 [ O A cos ? ∠ O A I cos ? ( A 2 ) ? A X cos ? A 2 OA\cos \angle OAI \cos (\frac{A}{2})-AX \cos \frac{A}{2} OAcos∠OAIcos(2A?)?AXcos2A? ]= p ? 3 a 2 ? c ? b 2 ? a = 0 p-\frac{3a}{2}-\frac{c-b}{2}-a=0 p?23a??2c?b??a=0
所以 I X = 2 ( O A cos ? ∠ O A I ? A X ) IX=2(OA \cos \angle OAI-AX) IX=2(OAcos∠OAI?AX) 成立, 進而 O I = O X OI=OX OI=OX.
所以 O I = O X OI=OX OI=OX.
類似地, 還可以證明 O I = O Y OI=OY OI=OY, O I = O Z OI=OZ OI=OZ.
所以該圓的圓心為 O O O.
∠ F P X = π ? A 2 \angle FPX = \pi - \frac{A}{2} ∠FPX=π?2A?
∠ F P Y = π ? B 2 \angle FPY= \pi - \frac{B}{2} ∠FPY=π?2B?
∠ X P Y = π 2 ? C 2 = ∠ X Z Y \angle XPY= \frac{\pi}{2}- \frac{C}{2} = \angle XZY ∠XPY=2π??2C?=∠XZY
所以 P P P 在 ( X Y Z ) (XYZ) (XYZ) 上, 進而 O I = O P OI=OP OI=OP.
證畢.