kaggle視頻行為分析1st and Future - Player Contact Detection

這次比賽的目標是檢測美式橄欖球NFL比賽中球員經歷的外部接觸。您將使用視頻和球員追蹤數據來識別發生接觸的時刻,以幫助提高球員的安全。兩種接觸,一種是人與人的,另一種是人與地面,不包括腳底和地面的,跟我之前做的這個是同一個主辦方舉行的

kaggle視頻追蹤NFL Health & Safety - Helmet Assignment-CSDN博客

之前做的是視頻追蹤,用的deepsort,這一場比賽用的2.5DCNN。

EDA部分

eda可以參考這一個notebook,用的fasteda,挺方便的

NFL Player Contact Detection EDA 🏈 | Kaggle

視頻數據在test和train文件夾里面,還提供了這一個train_baseline_helmets.csv,是由上一次比賽的冠軍方案產生的,是我之前做的視頻追蹤,train_player_tracking.csv?的頻率是10HZ,視頻是59.94HZ,之后要進行轉換,snap 事件也就是比賽開始發生在視頻的第五秒

train_labels.csv

  • step: A number representing each each timestep for each play, starting at 0 at the moment of the play starting, and incrementing by 1 every 0.1 seconds.
  • 之前說的比賽第5秒開始,一個step是0.1秒

接觸發生以10HZ記錄

[train/test]_player_tracking.csv

  • datetime: timestamp at 10 Hz.

[train/test]_video_metadata.csv

be used to sync with player tracking data.和視頻是同步的

訓練部分

我自己租卡跑,20多個小時,10個epoch,我上傳到kaggle,鏈接如下

track_weight | Kaggle

額外要用的一個數據集如下,我用的的4090顯卡20核跑的,你要自己訓練的話要自己修改一下

timm-0.6.9 | Kaggle

導入包

import os
import sys
import glob
import numpy as np
import pandas as pd
import random
import math
import gc
import cv2
from tqdm import tqdm
import time
from functools import lru_cache
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast, GradScaler
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from timm.scheduler import CosineLRScheduler
sys.path.append('../input/timm-0-6-9/pytorch-image-models-master')

配置

CFG = {'seed': 42,'model': 'convnext_small.fb_in1k','img_size': 256,'epochs': 10,'train_bs': 48, 'valid_bs': 32,'lr': 1e-3, 'weight_decay': 1e-6,'num_workers': 20,'max_grad_norm' : 1000,'epochs_warmup' : 3.0
}

我用的convnext,這個網絡是原本的cnn根據vit模型去反復修改的,有興趣自己去找論文看,但論文也就是在那反復調

設置種子和device

def seed_everything(seed):random.seed(seed)os.environ['PYTHONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falseseed_everything(CFG['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

添加一些額外的列和讀取數據

def expand_contact_id(df):"""Splits out contact_id into seperate columns."""df["game_play"] = df["contact_id"].str[:12]df["step"] = df["contact_id"].str.split("_").str[-3].astype("int")df["nfl_player_id_1"] = df["contact_id"].str.split("_").str[-2]df["nfl_player_id_2"] = df["contact_id"].str.split("_").str[-1]return df
labels = expand_contact_id(pd.read_csv("../input/nfl-player-contact-detection/train_labels.csv"))
train_tracking = pd.read_csv("../input/nfl-player-contact-detection/train_player_tracking.csv")
train_helmets = pd.read_csv("../input/nfl-player-contact-detection/train_baseline_helmets.csv")
train_video_metadata = pd.read_csv("../input/nfl-player-contact-detection/train_video_metadata.csv")

將視頻數據轉化為圖像數據

import subprocess
from tqdm import tqdm# 假設 train_helmets 是一個包含視頻文件名的 DataFrame
for video in tqdm(train_helmets.video.unique()):if 'Endzone2' not in video:# 輸入視頻路徑input_path = f'/openbayes/home/train/{video}'# 輸出幀路徑output_path = f'/openbayes/train/frames/{video}_%04d.jpg'# 構建 ffmpeg 命令command = ['ffmpeg','-i', input_path,  # 輸入視頻文件'-q:v', '5',       # 設置輸出圖像質量'-f', 'image2',    # 輸出為圖像序列output_path,       # 輸出圖像路徑'-hide_banner',    # 隱藏 ffmpeg 的 banner 信息'-loglevel', 'error'  # 只顯示錯誤日志]# 執行命令subprocess.run(command, check=True)

可以自己修改那里的質量,在kaggle上不能訓練,要你自己租卡才跑的動

創建一些特征

def create_features(df, tr_tracking, merge_col="step", use_cols=["x_position", "y_position"]):output_cols = []df_combo = (df.astype({"nfl_player_id_1": "str"}).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id",] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_1"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).rename(columns={c: c+"_1" for c in use_cols}).drop("nfl_player_id", axis=1).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id"] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_2"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).drop("nfl_player_id", axis=1).rename(columns={c: c+"_2" for c in use_cols}).sort_values(["game_play", merge_col, "nfl_player_id_1", "nfl_player_id_2"]).reset_index(drop=True))output_cols += [c+"_1" for c in use_cols]output_cols += [c+"_2" for c in use_cols]if ("x_position" in use_cols) & ("y_position" in use_cols):index = df_combo['x_position_2'].notnull()distance_arr = np.full(len(index), np.nan)tmp_distance_arr = np.sqrt(np.square(df_combo.loc[index, "x_position_1"] - df_combo.loc[index, "x_position_2"])+ np.square(df_combo.loc[index, "y_position_1"]- df_combo.loc[index, "y_position_2"]))distance_arr[index] = tmp_distance_arrdf_combo['distance'] = distance_arroutput_cols += ["distance"]df_combo['G_flug'] = (df_combo['nfl_player_id_2']=="G")output_cols += ["G_flug"]return df_combo, output_colsuse_cols = ['x_position', 'y_position', 'speed', 'distance','direction', 'orientation', 'acceleration', 'sa'
]train, feature_cols = create_features(labels, train_tracking, use_cols=use_cols)

label和train_tracking進行合并,這里的feature_cols后面訓練要用到

和視頻的頻率進行同步,過濾一部分數據

train_filtered = train.query('not distance>2').reset_index(drop=True)
train_filtered['frame'] = (train_filtered['step']/10*59.94+5*59.94).astype('int')+1
train_filtered.head()

視頻頻率是59.94,而數據集是10,這里將距離過大的pair去除

數據增強

train_aug = A.Compose([A.HorizontalFlip(p=0.5),A.ShiftScaleRotate(p=0.5),A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])valid_aug = A.Compose([A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])

創建字典

video2helmets = {}
train_helmets_new = train_helmets.set_index('video')
for video in tqdm(train_helmets.video.unique()):video2helmets[video] = train_helmets_new.loc[video].reset_index(drop=True)
video2frames = {}for game_play in tqdm(train_video_metadata.game_play.unique()):for view in ['Endzone', 'Sideline']:video = game_play + f'_{view}.mp4'video2frames[video] = max(list(map(lambda x:int(x.split('_')[-1].split('.')[0]), \glob.glob(f'../train/frames/{video}*'))))

取出視頻對應的檢測數據和每個視頻的最大幀數,檢測數據后面用來截取圖像用的,最大幀數確保抽取的幀不超過這個范圍

數據集

class MyDataset(Dataset):def __init__(self, df, aug=train_aug, mode='train'):self.df = dfself.frame = df.frame.valuesself.feature = df[feature_cols].fillna(-1).valuesself.players = df[['nfl_player_id_1','nfl_player_id_2']].valuesself.game_play = df.game_play.valuesself.aug = augself.mode = modedef __len__(self):return len(self.df)# @lru_cache(1024)# def read_img(self, path):#     return cv2.imread(path, 0)def __getitem__(self, idx):   window = 24frame = self.frame[idx]if self.mode == 'train':frame = frame + random.randint(-6, 6)players = []for p in self.players[idx]:if p == 'G':players.append(p)else:players.append(int(p))imgs = []for view in ['Endzone', 'Sideline']:video = self.game_play[idx] + f'_{view}.mp4'tmp = video2helmets[video]
#             tmp = tmp.query('@frame-@window<=frame<=@frame+@window')tmp[tmp['frame'].between(frame-window, frame+window)]tmp = tmp[tmp.nfl_player_id.isin(players)]#.sort_values(['nfl_player_id', 'frame'])tmp_frames = tmp.frame.valuestmp = tmp.groupby('frame')[['left','width','top','height']].mean()
#0.002sbboxes = []for f in range(frame-window, frame+window+1, 1):if f in tmp_frames:x, w, y, h = tmp.loc[f][['left','width','top','height']]bboxes.append([x, w, y, h])else:bboxes.append([np.nan, np.nan, np.nan, np.nan])bboxes = pd.DataFrame(bboxes).interpolate(limit_direction='both').valuesbboxes = bboxes[::4]if bboxes.sum() > 0:flag = 1else:flag = 0
#0.03sfor i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'../train/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)
#0.06sfeature = np.float32(self.feature[idx])img = np.array(imgs).transpose(1, 2, 0)    img = self.aug(image=img)["image"]label = np.float32(self.df.contact.values[idx])return img, feature, label

模型

class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.backbone = timm.create_model(CFG['model'], pretrained=True, num_classes=500, in_chans=13)self.mlp = nn.Sequential(nn.Linear(18, 64),nn.LayerNorm(64),nn.ReLU(),nn.Dropout(0.2),)self.fc = nn.Linear(64+500*2, 1)def forward(self, img, feature):b, c, h, w = img.shapeimg = img.reshape(b*2, c//2, h, w)img = self.backbone(img).reshape(b, -1)feature = self.mlp(feature)y = self.fc(torch.cat([img, feature], dim=1))return y

這里len(feature_cols)是18,所以mlp輸入是18,在上面

            for i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'/openbayes/train/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)

進行了抽幀,每個視角抽了13幀,兩個視角,總計26幀,所以輸入通道26,跟之前的比賽一樣,也是提供兩個視角

for view in ['Endzone', 'Sideline']:

損失函數

model = Model()
model.to(device)
model.train()
import torch.nn as nn
criterion = nn.BCEWithLogitsLoss()

這里用的交叉熵

評估指標

def evaluate(model, loader_val, *, compute_score=True, pbar=None):"""Predict and compute loss and score"""tb = time.time()in_training = model.trainingmodel.eval()loss_sum = 0.0n_sum = 0y_all = []y_pred_all = []if pbar is not None:pbar = tqdm(desc='Predict', nrows=78, total=pbar)total= len(loader_val)for ibatch,(img, feature, label) in tqdm(enumerate(loader_val),total = total):# img, feature, label = [x.to(device) for x in batch]img = img.to(device)feature = feature.to(device)n = label.size(0)label = label.to(device)with torch.no_grad():y_pred = model(img, feature)loss = criterion(y_pred.view(-1), label)n_sum += nloss_sum += n * loss.item()if pbar is not None:pbar.update(len(img))del loss, img, labelgc.collect()loss_val = loss_sum / n_sumret = {'loss': loss_val,'time': time.time() - tb}model.train(in_training) gc.collect()return ret

載入數據,設置學習率計劃和優化器

train_set,valid_set = train_test_split(train_filtered,test_size=0.05, random_state=42,stratify = train_filtered['contact'])
train_set = MyDataset(train_set, train_aug, 'train')
train_loader = DataLoader(train_set, batch_size=CFG['train_bs'], shuffle=True, num_workers=12, pin_memory=True,drop_last=True)
valid_set = MyDataset(valid_set, valid_aug, 'test')
valid_loader = DataLoader(valid_set, batch_size=CFG['valid_bs'], shuffle=False, num_workers=12, pin_memory=True)
optimizer = torch.optim.AdamW(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'])
nbatch = len(train_loader)
warmup = CFG['epochs_warmup'] * nbatch
nsteps = CFG['epochs'] * nbatch 
scheduler = CosineLRScheduler(optimizer,warmup_t=warmup, warmup_lr_init=0.0, warmup_prefix=True,t_initial=(nsteps - warmup), lr_min=1e-6)    

開始訓練,這里保存整個模型

for iepoch in range(CFG['epochs']):print('Epoch:', iepoch+1)loss_sum = 0.0n_sum = 0total = len(train_loader)# Trainfor ibatch,(img, feature, label) in tqdm(enumerate(train_loader),total = total):img = img.to(device)feature = feature.to(device)n = label.size(0)label = label.to(device)optimizer.zero_grad()y_pred = model(img, feature).squeeze(-1)loss = criterion(y_pred, label)loss_train = loss.item()loss_sum += n * loss_trainn_sum += nloss.backward()grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),CFG['max_grad_norm'])optimizer.step()scheduler.step(iepoch * nbatch + ibatch + 1)val = evaluate(model, valid_loader)time_val += val['time']loss_train = loss_sum / n_sumdt = (time.time() - tb) / 60print('Epoch: %d Train Loss: %.4f Test Loss: %.4f Time: %.2f min' %(iepoch + 1, loss_train, val['loss'],dt))if val['loss'] < best_loss:best_loss = val['loss']# Save modelofilename = '/openbayes/home/best_model.pt'torch.save(model, ofilename)print(ofilename, 'written')del valgc.collect()dt = time.time() - tb
print(' %.2f min total, %.2f min val' % (dt / 60, time_val / 60))
gc.collect()

只保留權重可能會出現一些bug,保留整個模型比較穩妥

推理部分

這里我用TTA的版本

導入包

import os
import sys
sys.path.append('/kaggle/input/timm-0-6-9/pytorch-image-models-master')
import glob
import numpy as np
import pandas as pd
import random
import math
import gc
import cv2
from tqdm import tqdm
import time
from functools import lru_cache
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast, GradScaler
import timm
import albumentations as A
from albumentations.pytorch import ToTensorV2
import matplotlib.pyplot as plt
from sklearn.metrics import matthews_corrcoef

數據處理

這里基本和前面一樣,我全部放一起了

CFG = {'seed': 42,'model': 'convnext_small.fb_in1k','img_size': 256,'epochs': 10,'train_bs': 100, 'valid_bs': 64,'lr': 1e-3, 'weight_decay': 1e-6,'num_workers': 4
}
def seed_everything(seed):random.seed(seed)os.environ['PYTHONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = Falseseed_everything(CFG['seed'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def expand_contact_id(df):"""Splits out contact_id into seperate columns."""df["game_play"] = df["contact_id"].str[:12]df["step"] = df["contact_id"].str.split("_").str[-3].astype("int")df["nfl_player_id_1"] = df["contact_id"].str.split("_").str[-2]df["nfl_player_id_2"] = df["contact_id"].str.split("_").str[-1]return dflabels = expand_contact_id(pd.read_csv("/kaggle/input/nfl-player-contact-detection/sample_submission.csv"))test_tracking = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_player_tracking.csv")test_helmets = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_baseline_helmets.csv")test_video_metadata = pd.read_csv("/kaggle/input/nfl-player-contact-detection/test_video_metadata.csv")
!mkdir -p ../work/framesfor video in tqdm(test_helmets.video.unique()):if 'Endzone2' not in video:!ffmpeg -i /kaggle/input/nfl-player-contact-detection/test/{video} -q:v 2 -f image2 /kaggle/work/frames/{video}_%04d.jpg -hide_banner -loglevel error
def create_features(df, tr_tracking, merge_col="step", use_cols=["x_position", "y_position"]):output_cols = []df_combo = (df.astype({"nfl_player_id_1": "str"}).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id",] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_1"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).rename(columns={c: c+"_1" for c in use_cols}).drop("nfl_player_id", axis=1).merge(tr_tracking.astype({"nfl_player_id": "str"})[["game_play", merge_col, "nfl_player_id"] + use_cols],left_on=["game_play", merge_col, "nfl_player_id_2"],right_on=["game_play", merge_col, "nfl_player_id"],how="left",).drop("nfl_player_id", axis=1).rename(columns={c: c+"_2" for c in use_cols}).sort_values(["game_play", merge_col, "nfl_player_id_1", "nfl_player_id_2"]).reset_index(drop=True))output_cols += [c+"_1" for c in use_cols]output_cols += [c+"_2" for c in use_cols]if ("x_position" in use_cols) & ("y_position" in use_cols):index = df_combo['x_position_2'].notnull()distance_arr = np.full(len(index), np.nan)tmp_distance_arr = np.sqrt(np.square(df_combo.loc[index, "x_position_1"] - df_combo.loc[index, "x_position_2"])+ np.square(df_combo.loc[index, "y_position_1"]- df_combo.loc[index, "y_position_2"]))distance_arr[index] = tmp_distance_arrdf_combo['distance'] = distance_arroutput_cols += ["distance"]df_combo['G_flug'] = (df_combo['nfl_player_id_2']=="G")output_cols += ["G_flug"]return df_combo, output_colsuse_cols = ['x_position', 'y_position', 'speed', 'distance','direction', 'orientation', 'acceleration', 'sa'
]test, feature_cols = create_features(labels, test_tracking, use_cols=use_cols)
test
test_filtered = test.query('not distance>2').reset_index(drop=True)
test_filtered['frame'] = (test_filtered['step']/10*59.94+5*59.94).astype('int')+1
test_filtered
del test, labels, test_tracking
gc.collect()
train_aug = A.Compose([A.HorizontalFlip(p=0.5),A.ShiftScaleRotate(p=0.5),A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5),A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])valid_aug = A.Compose([A.Normalize(mean=[0.], std=[1.]),ToTensorV2()
])
video2helmets = {}
test_helmets_new = test_helmets.set_index('video')
for video in tqdm(test_helmets.video.unique()):video2helmets[video] = test_helmets_new.loc[video].reset_index(drop=True)del test_helmets, test_helmets_new
gc.collect()
video2frames = {}for game_play in tqdm(test_video_metadata.game_play.unique()):for view in ['Endzone', 'Sideline']:video = game_play + f'_{view}.mp4'video2frames[video] = max(list(map(lambda x:int(x.split('_')[-1].split('.')[0]), \glob.glob(f'/kaggle/work/frames/{video}*'))))
class MyDataset(Dataset):def __init__(self, df, aug=valid_aug, mode='train'):self.df = dfself.frame = df.frame.valuesself.feature = df[feature_cols].fillna(-1).valuesself.players = df[['nfl_player_id_1','nfl_player_id_2']].valuesself.game_play = df.game_play.valuesself.aug = augself.mode = modedef __len__(self):return len(self.df)# @lru_cache(1024)# def read_img(self, path):#     return cv2.imread(path, 0)def __getitem__(self, idx):   window = 24frame = self.frame[idx]if self.mode == 'train':frame = frame + random.randint(-6, 6)players = []for p in self.players[idx]:if p == 'G':players.append(p)else:players.append(int(p))imgs = []for view in ['Endzone', 'Sideline']:video = self.game_play[idx] + f'_{view}.mp4'tmp = video2helmets[video]
#             tmp = tmp.query('@frame-@window<=frame<=@frame+@window')tmp[tmp['frame'].between(frame-window, frame+window)]tmp = tmp[tmp.nfl_player_id.isin(players)]#.sort_values(['nfl_player_id', 'frame'])tmp_frames = tmp.frame.valuestmp = tmp.groupby('frame')[['left','width','top','height']].mean()
#0.002sbboxes = []for f in range(frame-window, frame+window+1, 1):if f in tmp_frames:x, w, y, h = tmp.loc[f][['left','width','top','height']]bboxes.append([x, w, y, h])else:bboxes.append([np.nan, np.nan, np.nan, np.nan])bboxes = pd.DataFrame(bboxes).interpolate(limit_direction='both').valuesbboxes = bboxes[::4]if bboxes.sum() > 0:flag = 1else:flag = 0
#0.03sfor i, f in enumerate(range(frame-window, frame+window+1, 4)):img_new = np.zeros((256, 256), dtype=np.float32)if flag == 1 and f <= video2frames[video]:img = cv2.imread(f'/kaggle/work/frames/{video}_{f:04d}.jpg', 0)x, w, y, h = bboxes[i]img = img[int(y+h/2)-128:int(y+h/2)+128,int(x+w/2)-128:int(x+w/2)+128].copy()img_new[:img.shape[0], :img.shape[1]] = imgimgs.append(img_new)
#0.06sfeature = np.float32(self.feature[idx])img = np.array(imgs).transpose(1, 2, 0)    img = self.aug(image=img)["image"]label = np.float32(self.df.contact.values[idx])return img, feature, label

查看截取出來的圖片

img, feature, label = MyDataset(test_filtered, valid_aug, 'test')[0]
plt.imshow(img.permute(1,2,0)[:,:,7])
plt.show()
img.shape, feature, label

進行推理

class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.backbone = timm.create_model(CFG['model'], pretrained=False, num_classes=500, in_chans=13)self.mlp = nn.Sequential(nn.Linear(18, 64),nn.LayerNorm(64),nn.ReLU(),nn.Dropout(0.2),# nn.Linear(64, 64),# nn.LayerNorm(64),# nn.ReLU(),# nn.Dropout(0.2))self.fc = nn.Linear(64+500*2, 1)def forward(self, img, feature):b, c, h, w = img.shapeimg = img.reshape(b*2, c//2, h, w)img = self.backbone(img).reshape(b, -1)feature = self.mlp(feature)y = self.fc(torch.cat([img, feature], dim=1))return y
test_set = MyDataset(test_filtered, valid_aug, 'test')
test_loader = DataLoader(test_set, batch_size=CFG['valid_bs'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True)model = Model().to(device)
model = torch.load('/kaggle/input/track-weight/best_model.pt')model.eval()y_pred = []
with torch.no_grad():tk = tqdm(test_loader, total=len(test_loader))for step, batch in enumerate(tk):if(step % 4 != 3):img, feature, label = [x.to(device) for x in batch]output1 = model(img, feature).squeeze(-1)output2 = model(img.flip(-1), feature).squeeze(-1)y_pred.extend(0.2*(output1.sigmoid().cpu().numpy()) + 0.8*(output2.sigmoid().cpu().numpy()))else:img, feature, label = [x.to(device) for x in batch]output = model(img.flip(-1), feature).squeeze(-1)y_pred.extend(output.sigmoid().cpu().numpy())    y_pred = np.array(y_pred)

這里用了翻轉,tta算是一種隱式模型集成

提交

th = 0.29test_filtered['contact'] = (y_pred >= th).astype('int')sub = pd.read_csv('/kaggle/input/nfl-player-contact-detection/sample_submission.csv')sub = sub.drop("contact", axis=1).merge(test_filtered[['contact_id', 'contact']], how='left', on='contact_id')
sub['contact'] = sub['contact'].fillna(0).astype('int')sub[["contact_id", "contact"]].to_csv("submission.csv", index=False)sub.head()

推理代碼鏈接和成績

infer_code | Kaggle

修改版本

之前的,效果不是很好,我還是換成resnet50進行訓練,結果如下,鏈接和權重如下

infer_code | Kaggle

best_weight | Kaggle

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/894896.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/894896.shtml
英文地址,請注明出處:http://en.pswp.cn/news/894896.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

低成本訓練的突破與爭議:DeepSeek R1模型的新進展

摘要 近日&#xff0c;李飛飛團隊宣稱以50美元成本訓練出性能超越o1/R1的DeepSeek R1模型&#xff0c;此說法引發廣泛質疑。與此同時&#xff0c;上海交通大學本科生提出一種新的低成本推理方法&#xff0c;可能成為新熱門選擇。有觀點認為&#xff0c;若認可50美元能訓練出更優…

Sentinel的安裝和做限流的使用

一、安裝 Release v1.8.3 alibaba/Sentinel GitHubA powerful flow control component enabling reliability, resilience and monitoring for microservices. (面向云原生微服務的高可用流控防護組件) - Release v1.8.3 alibaba/Sentinelhttps://github.com/alibaba/Senti…

“AI隱患識別系統,安全多了道“智能護盾”

家人們&#xff0c;在生活和工作里&#xff0c;咱們都知道安全那可是頭等大事。不管是走在馬路上&#xff0c;還是在工廠車間忙碌&#xff0c;又或是住在高樓大廈里&#xff0c;身邊都可能藏著一些安全隱患。以前&#xff0c;發現這些隱患大多靠咱們的眼睛和經驗&#xff0c;可…

《手札·避坑篇》信息化和數字化的本質區別

信息化與數字化&#xff1a;軸承貿易公司的轉型之路 在當今商業環境中&#xff0c;信息化和數字化是企業轉型的兩個熱門詞匯。但對于很多外行人來說&#xff0c;這兩個概念可能容易混淆。本文將從軸承貿易公司的角度&#xff0c;結合真實案例和數據&#xff0c;分析信息化與數字…

基于DeepSeek API和VSCode的自動化網頁生成流程

1.創建API key 訪問官網DeepSeek &#xff0c;點擊API開放平臺。 在開放平臺界面左側點擊API keys&#xff0c;進入API keys管理界面&#xff0c;點擊創建API key按鈕創建API key&#xff0c;名稱自定義。 2.下載并安裝配置編輯器VSCode 官網Visual Studio Code - Code Editing…

SolidWorks教程P2.2【草圖 | 第二節】——草圖幾何關系與編輯

草圖幾何關系包括&#xff1a;重合、中點、相切、平行、相等、共線、對稱 草圖編輯功能包括&#xff1a;裁剪實體、轉換實體引用、等距實體 目錄 1.草圖幾何關系 2.裁剪實體 3.轉換實體引用 4.等距實體 補充知識&#xff1a;智能尺寸 1.草圖幾何關系 在之前的草圖介紹里…

AI大模型訓練實戰:分布式與微調指南

AI大模型訓練實戰:分布式與微調指南 適用人群:有一定深度學習基礎,正在或即將參與大模型(如 GPT、DeepSeek 等)訓練與部署的工程師、研究者;想要理解分布式策略與微調方法的讀者。 一、大模型為何需要分布式與微調? 隨著 GPT、DeepSeek 等大模型參數規模攀升至數十億甚…

【夢想終會實現】Linux驅動學習5

加油加油堅持住&#xff01; 1、 Linux驅動模型&#xff1a;驅動模型即將各模型中共有的部分抽象成C結構體。Linux2.4版本前無驅動模型的概念&#xff0c;每個驅動寫的代碼因人而異&#xff0c;隨后為規范書寫方式&#xff0c;發明了驅動模型&#xff0c;即提取公共信息組成一…

WARNING(ORCAP-1589): Net has two or more aliases - possible short?

參考鏈接&#xff1a;ORCAD報錯ORCAP-1589-CSDN博客 現象&#xff1a; Capture CIS 使用PCB-DRC檢查原理圖&#xff0c;報錯Net has two or more aliases - possible short? 錯誤原因&#xff1a; 一個網絡有兩個網絡名稱。 問題本質&#xff1a; 原理圖管腳型號的設定問題…

nvm:node 版本管理器

一、先安裝git Git 安裝完成后執行 git --version查看版本號是否安裝成功 二、安裝nvm &#xff08;參考鏈接&#xff1a;mac 安裝nvm詳細教程 - 簡書&#xff09; 官網&#xff08;https://github.com/nvm-sh/nvm/blob/master/README.md&#xff09;查看最新版本安裝命令 …

動態規劃——路徑問題①

文章目錄 62. 不同路徑算法原理代碼實現 63. 不同路徑 II算法原理代碼實現 LCR 166. 珠寶的最高價值算法原理代碼實現 62. 不同路徑 題目鏈接&#xff1a;62. 不同路徑 算法原理 狀態表示&#xff1a; dp[i,j]&#xff1a;以[i, j]位置為結尾&#xff0c;走到[i, j]位置有多少…

NodeList 對象

NodeList 對象 概述 NodeList 對象是 DOM(文檔對象模型)中的一種特殊類型,它代表了文檔中一組元素的集合。NodeList 對象通常通過查詢 DOM 樹來獲取,例如使用 document.querySelectorAll() 方法。NodeList 對象在 JavaScript 中非常有用,因為它允許開發者以編程方式遍歷…

C++自研3D教程OPENGL版本---動態批處理的基本實現

又開始找工作了&#xff0c;借機休息出去旅行兩個月&#xff0c;順便利用這段時間整理下以前寫的東西。 以下是一個簡單的動態批處理實現&#xff1a; #include <GL/glew.h> #include <GLFW/glfw3.h> #include <iostream> #include <vector>// 頂點結…

61. Linux內核啟動流程簡介

一、vmlinux.lds簡介 從arch/arm/kernel/vmlinux.lds分析Linux內核第一行啟動代碼。找到ENTRY(stext) 入口函數是stext&#xff0c;image和zImage是經過壓縮的&#xff0c;Linux內核會先進行解壓縮&#xff0c;解壓縮完成以后就要運行Linux內核。要求&#xff1a; 1、MMU關閉 …

汽車智能座艙的技術演進與用戶體驗重構 —— 基于多模態交互與 AI 融合的范式創新

摘要&#xff1a; 汽車智能座艙作為人 - 車 - 環境交互的核心載體&#xff0c;正經歷從功能驅動到體驗驅動的范式變革。本文通過技術解構與用戶行為分析&#xff0c;深入揭示智能座艙在異構計算、多模態感知、服務生態等維度的創新路徑。研究表明&#xff0c;智能座艙的競爭焦…

使用 Let‘s Encrypt 和 OpenResty 實現域名轉發與 SSL 配置

在搭建網站或服務時&#xff0c;確保域名的安全性和正確的流量轉發是非常重要的。本文將介紹如何使用 Let’s Encrypt 獲取免費的 SSL 證書&#xff0c;并將其配置到 OpenResty 中&#xff0c;同時實現特定的域名轉發規則。這不僅可以提升網站的安全性&#xff0c;還能優化流量…

SpringBoot3整合Swagger3時出現Type javax.servlet.http.HttpServletRequest not present錯誤

目錄 錯誤詳情 錯誤原因 解決方法 引入依賴 修改配置信息 創建文件 訪問 錯誤詳情 錯誤原因 SpringBoot3和Swagger3版本不匹配 解決方法 使用springdoc替代springfox&#xff0c;具體步驟如下&#xff1a; 引入依賴 在pom.xml文件中添加如下依賴&#xff1a; <…

ChatGPT提問技巧:行業熱門應用提示詞案例-文案寫作

ChatGPT 作為強大的 AI 語言模型&#xff0c;已經成為文案寫作的得力助手。但要讓它寫出真正符合你需求的文案&#xff0c;關鍵在于如何與它“溝通”&#xff0c;也就是如何設計提示詞&#xff08;Prompt&#xff09;。以下是一些實用的提示詞案例&#xff0c;幫助你解鎖 ChatG…

供排水水工公司開展企業獲得用水營商環境滿意度調查

為了持續提升企業的供水服務品質&#xff0c;進一步優化當地的營商環境&#xff0c;深圳市供排水公司水工公司緊密結合其實際工作情況&#xff0c;特別委托民安智庫開展了2023年度優化營商環境調查專項工作。該項目的核心目的是深入了解并評估市各類獲得用水企業的用水環境滿意…

【Elasticsearch】分桶聚合功能概述

這些聚合功能可以根據它們的作用和應用場景分為幾大類&#xff0c;以下是分類后的結果&#xff1a; 1.基礎聚合&#xff08;Basic Aggregations&#xff09; ? Terms&#xff08;字段聚合&#xff09; 根據字段值對數據進行分組并統計。 例子&#xff1a;按產品類別統計銷…