一、point.rs源碼
use super::UnknownUnit;
use crate::approxeq::ApproxEq;
use crate::approxord::{max, min};
use crate::length::Length;
use crate::num::*;
use crate::scale::Scale;
use crate::size::{Size2D, Size3D};
use crate::vector::{vec2, vec3, Vector2D, Vector3D};
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
#[cfg(feature = "mint")]
use mint;
use num_traits::real::Real;
use num_traits::{Euclid, Float, NumCast};
#[cfg(feature = "serde")]
use serde;#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};/// A 2d Point tagged with a unit.
#[repr(C)]
pub struct Point2D<T, U> {pub x: T,pub y: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}impl<T: Copy, U> Copy for Point2D<T, U> {}impl<T: Clone, U> Clone for Point2D<T, U> {fn clone(&self) -> Self {Point2D {x: self.x.clone(),y: self.y.clone(),_unit: PhantomData,}}
}//反序列化
#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point2D<T, U>
whereT: serde::Deserialize<'de>,
{fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (x, y) = serde::Deserialize::deserialize(deserializer)?;Ok(Point2D {x,y,_unit: PhantomData,})}
}//序列化
#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point2D<T, U>
whereT: serde::Serialize,
{fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.x, &self.y).serialize(serializer)}
}
//模糊測試的庫特性,提供隨機數,提高測試范圍
#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Point2D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (x, y) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Point2D {x,y,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Point2D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Point2D<T, U> {}impl<T, U> Eq for Point2D<T, U> where T: Eq {}impl<T, U> PartialEq for Point2D<T, U>
whereT: PartialEq,
{fn eq(&self, other: &Self) -> bool {self.x == other.x && self.y == other.y}
}impl<T, U> Hash for Point2D<T, U>
whereT: Hash,
{fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.x.hash(h);self.y.hash(h);}
}mint_vec!(Point2D[x, y] = Point2);impl<T: fmt::Debug, U> fmt::Debug for Point2D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {f.debug_tuple("").field(&self.x).field(&self.y).finish()}
}impl<T: Default, U> Default for Point2D<T, U> {fn default() -> Self {Point2D::new(Default::default(), Default::default())}
}impl<T, U> Point2D<T, U> {/// Constructor, setting all components to zero.#[inline]pub fn origin() -> SelfwhereT: Zero,{point2(Zero::zero(), Zero::zero())}/// The same as [`Point2D::origin`].#[inline]pub fn zero() -> SelfwhereT: Zero,{Self::origin()}/// Constructor taking scalar values directly.#[inline]pub const fn new(x: T, y: T) -> Self {Point2D {x,y,_unit: PhantomData,}}/// Constructor taking properly Lengths instead of scalar values.#[inline]pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {point2(x.0, y.0)}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Point2D {x: v.clone(),y: v,_unit: PhantomData,}}/// Tag a unitless value with units.#[inline]pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self {point2(p.x, p.y)}/// Apply the function `f` to each component of this point.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Point2D;////// let p = Point2D::<u32>::new(5, 15);/// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point2D::new(0, 5));/// ```#[inline]pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Point2D<V, U> {point2(f(self.x), f(self.y))}/// Apply the function `f` to each pair of components of this point and `rhs`.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::{default::{Point2D, Vector2D}, point2};////// let a: Point2D<u32> = point2(50, 200);/// let b: Point2D<u32> = point2(100, 100);/// assert_eq!(a.zip(b, u32::saturating_sub), Vector2D::new(0, 100));/// ```#[inline]pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector2D<V, U> {vec2(f(self.x, rhs.x), f(self.y, rhs.y))}
}impl<T: Copy, U> Point2D<T, U> {/// Create a 3d point from this one, using the specified z value.#[inline]pub fn extend(self, z: T) -> Point3D<T, U> {point3(self.x, self.y, z)}/// Cast this point into a vector.////// Equivalent to subtracting the origin from this point.#[inline]pub fn to_vector(self) -> Vector2D<T, U> {Vector2D {x: self.x,y: self.y,_unit: PhantomData,}}/// Swap x and y.////// # Example////// ```rust/// # use euclid::{Point2D, point2};/// enum Mm {}////// let point: Point2D<_, Mm> = point2(1, -8);////// assert_eq!(point.yx(), point2(-8, 1));/// ```#[inline]pub fn yx(self) -> Self {point2(self.y, self.x)}/// Drop the units, preserving only the numeric value.////// # Example////// ```rust/// # use euclid::{Point2D, point2};/// enum Mm {}////// let point: Point2D<_, Mm> = point2(1, -8);////// assert_eq!(point.x, point.to_untyped().x);/// assert_eq!(point.y, point.to_untyped().y);/// ```#[inline]pub fn to_untyped(self) -> Point2D<T, UnknownUnit> {point2(self.x, self.y)}/// Cast the unit, preserving the numeric value.////// # Example////// ```rust/// # use euclid::{Point2D, point2};/// enum Mm {}/// enum Cm {}////// let point: Point2D<_, Mm> = point2(1, -8);////// assert_eq!(point.x, point.cast_unit::<Cm>().x);/// assert_eq!(point.y, point.cast_unit::<Cm>().y);/// ```#[inline]pub fn cast_unit<V>(self) -> Point2D<T, V> {point2(self.x, self.y)}/// Cast into an array with x and y.////// # Example////// ```rust/// # use euclid::{Point2D, point2};/// enum Mm {}////// let point: Point2D<_, Mm> = point2(1, -8);////// assert_eq!(point.to_array(), [1, -8]);/// ```#[inline]pub fn to_array(self) -> [T; 2] {[self.x, self.y]}/// Cast into a tuple with x and y.////// # Example////// ```rust/// # use euclid::{Point2D, point2};/// enum Mm {}////// let point: Point2D<_, Mm> = point2(1, -8);////// assert_eq!(point.to_tuple(), (1, -8));/// ```#[inline]pub fn to_tuple(self) -> (T, T) {(self.x, self.y)}/// Convert into a 3d point with z-coordinate equals to zero.#[inline]pub fn to_3d(self) -> Point3D<T, U>whereT: Zero,{point3(self.x, self.y, Zero::zero())}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point2;/// enum Mm {}////// assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{point2(self.x.round(), self.y.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point2;/// enum Mm {}////// assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{point2(self.x.ceil(), self.y.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point2;/// enum Mm {}////// assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{point2(self.x.floor(), self.y.floor())}/// Linearly interpolate between this point and another point.////// # Example////// ```rust/// use euclid::point2;/// use euclid::default::Point2D;////// let from: Point2D<_> = point2(0.0, 10.0);/// let to: Point2D<_> = point2(8.0, -4.0);////// assert_eq!(from.lerp(to, -1.0), point2(-8.0, 24.0));/// assert_eq!(from.lerp(to, 0.0), point2( 0.0, 10.0));/// assert_eq!(from.lerp(to, 0.5), point2( 4.0, 3.0));/// assert_eq!(from.lerp(to, 1.0), point2( 8.0, -4.0));/// assert_eq!(from.lerp(to, 2.0), point2(16.0, -18.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> SelfwhereT: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,{let one_t = T::one() - t;point2(one_t * self.x + t * other.x, one_t * self.y + t * other.y)}
}impl<T: PartialOrd, U> Point2D<T, U> {#[inline]pub fn min(self, other: Self) -> Self {point2(min(self.x, other.x), min(self.y, other.y))}#[inline]pub fn max(self, other: Self) -> Self {point2(max(self.x, other.x), max(self.y, other.y))}/// Returns the point each component of which clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}
}impl<T: NumCast + Copy, U> Point2D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Point2D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Point2D<NewT, U>> {match (NumCast::from(self.x), NumCast::from(self.y)) {(Some(x), Some(y)) => Some(point2(x, y)),_ => None,}}// Convenience functions for common casts/// Cast into an `f32` point.#[inline]pub fn to_f32(self) -> Point2D<f32, U> {self.cast()}/// Cast into an `f64` point.#[inline]pub fn to_f64(self) -> Point2D<f64, U> {self.cast()}/// Cast into an `usize` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Point2D<usize, U> {self.cast()}/// Cast into an `u32` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Point2D<u32, U> {self.cast()}/// Cast into an `i32` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Point2D<i32, U> {self.cast()}/// Cast into an `i64` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Point2D<i64, U> {self.cast()}
}impl<T: Float, U> Point2D<T, U> {/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.x.is_finite() && self.y.is_finite()}
}impl<T: Copy + Add<T, Output = T>, U> Point2D<T, U> {#[inline]pub fn add_size(self, other: &Size2D<T, U>) -> Self {point2(self.x + other.width, self.y + other.height)}
}impl<T: Real + Sub<T, Output = T>, U> Point2D<T, U> {#[inline]pub fn distance_to(self, other: Self) -> T {(self - other).length()}
}impl<T: Neg, U> Neg for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {point2(-self.x, -self.y)}
}impl<T: Add, U> Add<Size2D<T, U>> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn add(self, other: Size2D<T, U>) -> Self::Output {point2(self.x + other.width, self.y + other.height)}
}impl<T: AddAssign, U> AddAssign<Size2D<T, U>> for Point2D<T, U> {#[inline]fn add_assign(&mut self, other: Size2D<T, U>) {self.x += other.width;self.y += other.height;}
}impl<T: Add, U> Add<Vector2D<T, U>> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn add(self, other: Vector2D<T, U>) -> Self::Output {point2(self.x + other.x, self.y + other.y)}
}impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U> {#[inline]fn add_assign(&mut self, other: Vector2D<T, U>) {*self = *self + other;}
}impl<T: Sub, U> Sub for Point2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {vec2(self.x - other.x, self.y - other.y)}
}impl<T: Sub, U> Sub<Size2D<T, U>> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn sub(self, other: Size2D<T, U>) -> Self::Output {point2(self.x - other.width, self.y - other.height)}
}impl<T: SubAssign, U> SubAssign<Size2D<T, U>> for Point2D<T, U> {#[inline]fn sub_assign(&mut self, other: Size2D<T, U>) {self.x -= other.width;self.y -= other.height;}
}impl<T: Sub, U> Sub<Vector2D<T, U>> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn sub(self, other: Vector2D<T, U>) -> Self::Output {point2(self.x - other.x, self.y - other.y)}
}impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U> {#[inline]fn sub_assign(&mut self, other: Vector2D<T, U>) {*self = *self - other;}
}impl<T: Copy + Mul, U> Mul<T> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {point2(self.x * scale, self.y * scale)}
}impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U> {#[inline]fn mul_assign(&mut self, scale: T) {*self = *self * scale;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Point2D<T, U1> {type Output = Point2D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {point2(self.x * scale.0, self.y * scale.0)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point2D<T, U> {#[inline]fn mul_assign(&mut self, scale: Scale<T, U, U>) {self.x *= scale.0;self.y *= scale.0;}
}impl<T: Copy + Div, U> Div<T> for Point2D<T, U> {type Output = Point2D<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {point2(self.x / scale, self.y / scale)}
}impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U> {#[inline]fn div_assign(&mut self, scale: T) {*self = *self / scale;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Point2D<T, U2> {type Output = Point2D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {point2(self.x / scale.0, self.y / scale.0)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point2D<T, U> {#[inline]fn div_assign(&mut self, scale: Scale<T, U, U>) {self.x /= scale.0;self.y /= scale.0;}
}impl<T: Zero, U> Zero for Point2D<T, U> {#[inline]fn zero() -> Self {Self::origin()}
}impl<T: Round, U> Round for Point2D<T, U> {/// See [`Point2D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Point2D<T, U> {/// See [`Point2D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Point2D<T, U> {/// See [`Point2D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U> {#[inline]fn approx_epsilon() -> Self {point2(T::approx_epsilon(), T::approx_epsilon())}#[inline]fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)}
}impl<T: Euclid, U> Point2D<T, U> {/// Calculates the least nonnegative remainder of `self (mod other)`.////// # Example////// ```rust/// use euclid::point2;/// use euclid::default::{Point2D, Size2D};////// let p = Point2D::new(7.0, -7.0);/// let s = Size2D::new(4.0, -4.0);////// assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));/// assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));/// assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));/// ```#[inline]pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Self {point2(self.x.rem_euclid(&other.width),self.y.rem_euclid(&other.height),)}/// Calculates Euclidean division, the matching method for `rem_euclid`.////// # Example////// ```rust/// use euclid::point2;/// use euclid::default::{Point2D, Size2D};////// let p = Point2D::new(7.0, -7.0);/// let s = Size2D::new(4.0, -4.0);////// assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));/// assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));/// assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));/// ```#[inline]pub fn div_euclid(&self, other: &Size2D<T, U>) -> Self {point2(self.x.div_euclid(&other.width),self.y.div_euclid(&other.height),)}
}impl<T, U> From<Point2D<T, U>> for [T; 2] {fn from(p: Point2D<T, U>) -> Self {[p.x, p.y]}
}impl<T, U> From<[T; 2]> for Point2D<T, U> {fn from([x, y]: [T; 2]) -> Self {point2(x, y)}
}impl<T, U> From<Point2D<T, U>> for (T, T) {fn from(p: Point2D<T, U>) -> Self {(p.x, p.y)}
}impl<T, U> From<(T, T)> for Point2D<T, U> {fn from(tuple: (T, T)) -> Self {point2(tuple.0, tuple.1)}
}/// A 3d Point tagged with a unit.
#[repr(C)]
pub struct Point3D<T, U> {pub x: T,pub y: T,pub z: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}mint_vec!(Point3D[x, y, z] = Point3);impl<T: Copy, U> Copy for Point3D<T, U> {}impl<T: Clone, U> Clone for Point3D<T, U> {fn clone(&self) -> Self {Point3D {x: self.x.clone(),y: self.y.clone(),z: self.z.clone(),_unit: PhantomData,}}
}#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Point3D<T, U>
whereT: serde::Deserialize<'de>,
{fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (x, y, z) = serde::Deserialize::deserialize(deserializer)?;Ok(Point3D {x,y,z,_unit: PhantomData,})}
}#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Point3D<T, U>
whereT: serde::Serialize,
{fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.x, &self.y, &self.z).serialize(serializer)}
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Point3D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (x, y, z) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Point3D {x,y,z,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Point3D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Point3D<T, U> {}impl<T, U> Eq for Point3D<T, U> where T: Eq {}impl<T, U> PartialEq for Point3D<T, U>
whereT: PartialEq,
{fn eq(&self, other: &Self) -> bool {self.x == other.x && self.y == other.y && self.z == other.z}
}impl<T, U> Hash for Point3D<T, U>
whereT: Hash,
{fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.x.hash(h);self.y.hash(h);self.z.hash(h);}
}impl<T: fmt::Debug, U> fmt::Debug for Point3D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {f.debug_tuple("").field(&self.x).field(&self.y).field(&self.z).finish()}
}impl<T: Default, U> Default for Point3D<T, U> {fn default() -> Self {Point3D::new(Default::default(), Default::default(), Default::default())}
}impl<T, U> Point3D<T, U> {/// Constructor, setting all components to zero.#[inline]pub fn origin() -> SelfwhereT: Zero,{point3(Zero::zero(), Zero::zero(), Zero::zero())}/// The same as [`Point3D::origin`].#[inline]pub fn zero() -> SelfwhereT: Zero,{Self::origin()}/// Constructor taking scalar values directly.#[inline]pub const fn new(x: T, y: T, z: T) -> Self {Point3D {x,y,z,_unit: PhantomData,}}/// Constructor taking properly Lengths instead of scalar values.#[inline]pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self {point3(x.0, y.0, z.0)}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Point3D {x: v.clone(),y: v.clone(),z: v,_unit: PhantomData,}}/// Tag a unitless value with units.#[inline]pub fn from_untyped(p: Point3D<T, UnknownUnit>) -> Self {point3(p.x, p.y, p.z)}/// Apply the function `f` to each component of this point.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Point3D;////// let p = Point3D::<u32>::new(5, 11, 15);/// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Point3D::new(0, 1, 5));/// ```#[inline]pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Point3D<V, U> {point3(f(self.x), f(self.y), f(self.z))}/// Apply the function `f` to each pair of components of this point and `rhs`.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::{default::{Point3D, Vector3D}, point2};////// let a: Point3D<u32> = Point3D::new(50, 200, 400);/// let b: Point3D<u32> = Point3D::new(100, 100, 150);/// assert_eq!(a.zip(b, u32::saturating_sub), Vector3D::new(0, 100, 250));/// ```#[inline]pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector3D<V, U> {vec3(f(self.x, rhs.x), f(self.y, rhs.y), f(self.z, rhs.z))}
}impl<T: Copy, U> Point3D<T, U> {/// Cast this point into a vector.////// Equivalent to subtracting the origin to this point.#[inline]pub fn to_vector(self) -> Vector3D<T, U> {Vector3D {x: self.x,y: self.y,z: self.z,_unit: PhantomData,}}/// Returns a 2d point using this point's x and y coordinates#[inline]pub fn xy(self) -> Point2D<T, U> {point2(self.x, self.y)}/// Returns a 2d point using this point's x and z coordinates#[inline]pub fn xz(self) -> Point2D<T, U> {point2(self.x, self.z)}/// Returns a 2d point using this point's x and z coordinates#[inline]pub fn yz(self) -> Point2D<T, U> {point2(self.y, self.z)}/// Cast into an array with x, y and z.////// # Example////// ```rust/// # use euclid::{Point3D, point3};/// enum Mm {}////// let point: Point3D<_, Mm> = point3(1, -8, 0);////// assert_eq!(point.to_array(), [1, -8, 0]);/// ```#[inline]pub fn to_array(self) -> [T; 3] {[self.x, self.y, self.z]}#[inline]pub fn to_array_4d(self) -> [T; 4]whereT: One,{[self.x, self.y, self.z, One::one()]}/// Cast into a tuple with x, y and z.////// # Example////// ```rust/// # use euclid::{Point3D, point3};/// enum Mm {}////// let point: Point3D<_, Mm> = point3(1, -8, 0);////// assert_eq!(point.to_tuple(), (1, -8, 0));/// ```#[inline]pub fn to_tuple(self) -> (T, T, T) {(self.x, self.y, self.z)}#[inline]pub fn to_tuple_4d(self) -> (T, T, T, T)whereT: One,{(self.x, self.y, self.z, One::one())}/// Drop the units, preserving only the numeric value.////// # Example////// ```rust/// # use euclid::{Point3D, point3};/// enum Mm {}////// let point: Point3D<_, Mm> = point3(1, -8, 0);////// assert_eq!(point.x, point.to_untyped().x);/// assert_eq!(point.y, point.to_untyped().y);/// assert_eq!(point.z, point.to_untyped().z);/// ```#[inline]pub fn to_untyped(self) -> Point3D<T, UnknownUnit> {point3(self.x, self.y, self.z)}/// Cast the unit, preserving the numeric value.////// # Example////// ```rust/// # use euclid::{Point3D, point3};/// enum Mm {}/// enum Cm {}////// let point: Point3D<_, Mm> = point3(1, -8, 0);////// assert_eq!(point.x, point.cast_unit::<Cm>().x);/// assert_eq!(point.y, point.cast_unit::<Cm>().y);/// assert_eq!(point.z, point.cast_unit::<Cm>().z);/// ```#[inline]pub fn cast_unit<V>(self) -> Point3D<T, V> {point3(self.x, self.y, self.z)}/// Convert into a 2d point.#[inline]pub fn to_2d(self) -> Point2D<T, U> {self.xy()}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point3;/// enum Mm {}////// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).round(), point3::<_, Mm>(0.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{point3(self.x.round(), self.y.round(), self.z.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point3;/// enum Mm {}////// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), point3::<_, Mm>(0.0, 0.0, 1.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{point3(self.x.ceil(), self.y.ceil(), self.z.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::point3;/// enum Mm {}////// assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).floor(), point3::<_, Mm>(-1.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{point3(self.x.floor(), self.y.floor(), self.z.floor())}/// Linearly interpolate between this point and another point.////// # Example////// ```rust/// use euclid::point3;/// use euclid::default::Point3D;////// let from: Point3D<_> = point3(0.0, 10.0, -1.0);/// let to: Point3D<_> = point3(8.0, -4.0, 0.0);////// assert_eq!(from.lerp(to, -1.0), point3(-8.0, 24.0, -2.0));/// assert_eq!(from.lerp(to, 0.0), point3( 0.0, 10.0, -1.0));/// assert_eq!(from.lerp(to, 0.5), point3( 4.0, 3.0, -0.5));/// assert_eq!(from.lerp(to, 1.0), point3( 8.0, -4.0, 0.0));/// assert_eq!(from.lerp(to, 2.0), point3(16.0, -18.0, 1.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> SelfwhereT: One + Sub<Output = T> + Mul<Output = T> + Add<Output = T>,{let one_t = T::one() - t;point3(one_t * self.x + t * other.x,one_t * self.y + t * other.y,one_t * self.z + t * other.z,)}
}impl<T: PartialOrd, U> Point3D<T, U> {#[inline]pub fn min(self, other: Self) -> Self {point3(min(self.x, other.x),min(self.y, other.y),min(self.z, other.z),)}#[inline]pub fn max(self, other: Self) -> Self {point3(max(self.x, other.x),max(self.y, other.y),max(self.z, other.z),)}/// Returns the point each component of which clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}
}impl<T: NumCast + Copy, U> Point3D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Point3D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Point3D<NewT, U>> {match (NumCast::from(self.x),NumCast::from(self.y),NumCast::from(self.z),) {(Some(x), Some(y), Some(z)) => Some(point3(x, y, z)),_ => None,}}// Convenience functions for common casts/// Cast into an `f32` point.#[inline]pub fn to_f32(self) -> Point3D<f32, U> {self.cast()}/// Cast into an `f64` point.#[inline]pub fn to_f64(self) -> Point3D<f64, U> {self.cast()}/// Cast into an `usize` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Point3D<usize, U> {self.cast()}/// Cast into an `u32` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Point3D<u32, U> {self.cast()}/// Cast into an `i32` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Point3D<i32, U> {self.cast()}/// Cast into an `i64` point, truncating decimals if any.////// When casting from floating point points, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Point3D<i64, U> {self.cast()}
}impl<T: Float, U> Point3D<T, U> {/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.x.is_finite() && self.y.is_finite() && self.z.is_finite()}
}impl<T: Copy + Add<T, Output = T>, U> Point3D<T, U> {#[inline]pub fn add_size(self, other: Size3D<T, U>) -> Self {point3(self.x + other.width,self.y + other.height,self.z + other.depth,)}
}impl<T: Real + Sub<T, Output = T>, U> Point3D<T, U> {#[inline]pub fn distance_to(self, other: Self) -> T {(self - other).length()}
}impl<T: Neg, U> Neg for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {point3(-self.x, -self.y, -self.z)}
}impl<T: Add, U> Add<Size3D<T, U>> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn add(self, other: Size3D<T, U>) -> Self::Output {point3(self.x + other.width,self.y + other.height,self.z + other.depth,)}
}impl<T: AddAssign, U> AddAssign<Size3D<T, U>> for Point3D<T, U> {#[inline]fn add_assign(&mut self, other: Size3D<T, U>) {self.x += other.width;self.y += other.height;self.z += other.depth;}
}impl<T: Add, U> Add<Vector3D<T, U>> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn add(self, other: Vector3D<T, U>) -> Self::Output {point3(self.x + other.x, self.y + other.y, self.z + other.z)}
}impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U> {#[inline]fn add_assign(&mut self, other: Vector3D<T, U>) {*self = *self + other;}
}impl<T: Sub, U> Sub for Point3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {vec3(self.x - other.x, self.y - other.y, self.z - other.z)}
}impl<T: Sub, U> Sub<Size3D<T, U>> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn sub(self, other: Size3D<T, U>) -> Self::Output {point3(self.x - other.width,self.y - other.height,self.z - other.depth,)}
}impl<T: SubAssign, U> SubAssign<Size3D<T, U>> for Point3D<T, U> {#[inline]fn sub_assign(&mut self, other: Size3D<T, U>) {self.x -= other.width;self.y -= other.height;self.z -= other.depth;}
}impl<T: Sub, U> Sub<Vector3D<T, U>> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn sub(self, other: Vector3D<T, U>) -> Self::Output {point3(self.x - other.x, self.y - other.y, self.z - other.z)}
}impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U> {#[inline]fn sub_assign(&mut self, other: Vector3D<T, U>) {*self = *self - other;}
}impl<T: Copy + Mul, U> Mul<T> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {point3(self.x * scale, self.y * scale, self.z * scale)}
}impl<T: Copy + MulAssign, U> MulAssign<T> for Point3D<T, U> {#[inline]fn mul_assign(&mut self, scale: T) {self.x *= scale;self.y *= scale;self.z *= scale;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Point3D<T, U1> {type Output = Point3D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {point3(self.x * scale.0, self.y * scale.0, self.z * scale.0)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point3D<T, U> {#[inline]fn mul_assign(&mut self, scale: Scale<T, U, U>) {*self *= scale.0;}
}impl<T: Copy + Div, U> Div<T> for Point3D<T, U> {type Output = Point3D<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {point3(self.x / scale, self.y / scale, self.z / scale)}
}impl<T: Copy + DivAssign, U> DivAssign<T> for Point3D<T, U> {#[inline]fn div_assign(&mut self, scale: T) {self.x /= scale;self.y /= scale;self.z /= scale;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Point3D<T, U2> {type Output = Point3D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {point3(self.x / scale.0, self.y / scale.0, self.z / scale.0)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point3D<T, U> {#[inline]fn div_assign(&mut self, scale: Scale<T, U, U>) {*self /= scale.0;}
}impl<T: Zero, U> Zero for Point3D<T, U> {#[inline]fn zero() -> Self {Self::origin()}
}impl<T: Round, U> Round for Point3D<T, U> {/// See [`Point3D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Point3D<T, U> {/// See [`Point3D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Point3D<T, U> {/// See [`Point3D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: ApproxEq<T>, U> ApproxEq<Point3D<T, U>> for Point3D<T, U> {#[inline]fn approx_epsilon() -> Self {point3(T::approx_epsilon(),T::approx_epsilon(),T::approx_epsilon(),)}#[inline]fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {self.x.approx_eq_eps(&other.x, &eps.x)&& self.y.approx_eq_eps(&other.y, &eps.y)&& self.z.approx_eq_eps(&other.z, &eps.z)}
}impl<T: Euclid, U> Point3D<T, U> {/// Calculates the least nonnegative remainder of `self (mod other)`.////// # Example////// ```rust/// use euclid::point3;/// use euclid::default::{Point3D, Size3D};////// let p = Point3D::new(7.0, -7.0, 0.0);/// let s = Size3D::new(4.0, -4.0, 12.0);////// assert_eq!(p.rem_euclid(&s), point3(3.0, 1.0, 0.0));/// assert_eq!((-p).rem_euclid(&s), point3(1.0, 3.0, 0.0));/// assert_eq!(p.rem_euclid(&-s), point3(3.0, 1.0, 0.0));/// ```#[inline]pub fn rem_euclid(&self, other: &Size3D<T, U>) -> Self {point3(self.x.rem_euclid(&other.width),self.y.rem_euclid(&other.height),self.z.rem_euclid(&other.depth),)}/// Calculates Euclidean division, the matching method for `rem_euclid`.////// # Example////// ```rust/// use euclid::point3;/// use euclid::default::{Point3D, Size3D};////// let p = Point3D::new(7.0, -7.0, 0.0);/// let s = Size3D::new(4.0, -4.0, 12.0);////// assert_eq!(p.div_euclid(&s), point3(1.0, 2.0, 0.0));/// assert_eq!((-p).div_euclid(&s), point3(-2.0, -1.0, 0.0));/// assert_eq!(p.div_euclid(&-s), point3(-1.0, -2.0, 0.0));/// ```#[inline]pub fn div_euclid(&self, other: &Size3D<T, U>) -> Self {point3(self.x.div_euclid(&other.width),self.y.div_euclid(&other.height),self.z.div_euclid(&other.depth),)}
}impl<T, U> From<Point3D<T, U>> for [T; 3] {fn from(p: Point3D<T, U>) -> Self {[p.x, p.y, p.z]}
}impl<T, U> From<[T; 3]> for Point3D<T, U> {fn from([x, y, z]: [T; 3]) -> Self {point3(x, y, z)}
}impl<T, U> From<Point3D<T, U>> for (T, T, T) {fn from(p: Point3D<T, U>) -> Self {(p.x, p.y, p.z)}
}impl<T, U> From<(T, T, T)> for Point3D<T, U> {fn from(tuple: (T, T, T)) -> Self {point3(tuple.0, tuple.1, tuple.2)}
}/// Shorthand for `Point2D::new(x, y)`.
#[inline]
pub const fn point2<T, U>(x: T, y: T) -> Point2D<T, U> {Point2D {x,y,_unit: PhantomData,}
}/// Shorthand for `Point3D::new(x, y)`.
#[inline]
pub const fn point3<T, U>(x: T, y: T, z: T) -> Point3D<T, U> {Point3D {x,y,z,_unit: PhantomData,}
}#[cfg(test)]
mod point2d {use crate::default::Point2D;use crate::point2;#[cfg(feature = "mint")]use mint;#[test]pub fn test_min() {let p1 = Point2D::new(1.0, 3.0);let p2 = Point2D::new(2.0, 2.0);let result = p1.min(p2);assert_eq!(result, Point2D::new(1.0, 2.0));}#[test]pub fn test_max() {let p1 = Point2D::new(1.0, 3.0);let p2 = Point2D::new(2.0, 2.0);let result = p1.max(p2);assert_eq!(result, Point2D::new(2.0, 3.0));}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let p1 = Point2D::new(1.0, 3.0);let pm: mint::Point2<_> = p1.into();let p2 = Point2D::from(pm);assert_eq!(p1, p2);}#[test]pub fn test_conv_vector() {for i in 0..100 {// We don't care about these values as long as they are not the same.let x = i as f32 * 0.012345;let y = i as f32 * 0.987654;let p: Point2D<f32> = point2(x, y);assert_eq!(p.to_vector().to_point(), p);}}#[test]pub fn test_swizzling() {let p: Point2D<i32> = point2(1, 2);assert_eq!(p.yx(), point2(2, 1));}#[test]pub fn test_distance_to() {let p1 = Point2D::new(1.0, 2.0);let p2 = Point2D::new(2.0, 2.0);assert_eq!(p1.distance_to(p2), 1.0);let p1 = Point2D::new(1.0, 2.0);let p2 = Point2D::new(1.0, 4.0);assert_eq!(p1.distance_to(p2), 2.0);}mod ops {use crate::default::Point2D;use crate::scale::Scale;use crate::{size2, vec2, Vector2D};pub enum Mm {}pub enum Cm {}pub type Point2DMm<T> = crate::Point2D<T, Mm>;pub type Point2DCm<T> = crate::Point2D<T, Cm>;#[test]pub fn test_neg() {assert_eq!(-Point2D::new(1.0, 2.0), Point2D::new(-1.0, -2.0));assert_eq!(-Point2D::new(0.0, 0.0), Point2D::new(-0.0, -0.0));assert_eq!(-Point2D::new(-1.0, -2.0), Point2D::new(1.0, 2.0));}#[test]pub fn test_add_size() {let p1 = Point2DMm::new(1.0, 2.0);let p2 = size2(3.0, 4.0);let result = p1 + p2;assert_eq!(result, Point2DMm::new(4.0, 6.0));}#[test]pub fn test_add_assign_size() {let mut p1 = Point2DMm::new(1.0, 2.0);p1 += size2(3.0, 4.0);assert_eq!(p1, Point2DMm::new(4.0, 6.0));}#[test]pub fn test_add_vec() {let p1 = Point2DMm::new(1.0, 2.0);let p2 = vec2(3.0, 4.0);let result = p1 + p2;assert_eq!(result, Point2DMm::new(4.0, 6.0));}#[test]pub fn test_add_assign_vec() {let mut p1 = Point2DMm::new(1.0, 2.0);p1 += vec2(3.0, 4.0);assert_eq!(p1, Point2DMm::new(4.0, 6.0));}#[test]pub fn test_sub() {let p1 = Point2DMm::new(1.0, 2.0);let p2 = Point2DMm::new(3.0, 4.0);let result = p1 - p2;assert_eq!(result, Vector2D::<_, Mm>::new(-2.0, -2.0));}#[test]pub fn test_sub_size() {let p1 = Point2DMm::new(1.0, 2.0);let p2 = size2(3.0, 4.0);let result = p1 - p2;assert_eq!(result, Point2DMm::new(-2.0, -2.0));}#[test]pub fn test_sub_assign_size() {let mut p1 = Point2DMm::new(1.0, 2.0);p1 -= size2(3.0, 4.0);assert_eq!(p1, Point2DMm::new(-2.0, -2.0));}#[test]pub fn test_sub_vec() {let p1 = Point2DMm::new(1.0, 2.0);let p2 = vec2(3.0, 4.0);let result = p1 - p2;assert_eq!(result, Point2DMm::new(-2.0, -2.0));}#[test]pub fn test_sub_assign_vec() {let mut p1 = Point2DMm::new(1.0, 2.0);p1 -= vec2(3.0, 4.0);assert_eq!(p1, Point2DMm::new(-2.0, -2.0));}#[test]pub fn test_mul_scalar() {let p1: Point2D<f32> = Point2D::new(3.0, 5.0);let result = p1 * 5.0;assert_eq!(result, Point2D::new(15.0, 25.0));}#[test]pub fn test_mul_assign_scalar() {let mut p1 = Point2D::new(3.0, 5.0);p1 *= 5.0;assert_eq!(p1, Point2D::new(15.0, 25.0));}#[test]pub fn test_mul_scale() {let p1 = Point2DMm::new(1.0, 2.0);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = p1 * cm_per_mm;assert_eq!(result, Point2DCm::new(0.1, 0.2));}#[test]pub fn test_mul_assign_scale() {let mut p1 = Point2DMm::new(1.0, 2.0);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);p1 *= scale;assert_eq!(p1, Point2DMm::new(0.1, 0.2));}#[test]pub fn test_div_scalar() {let p1: Point2D<f32> = Point2D::new(15.0, 25.0);let result = p1 / 5.0;assert_eq!(result, Point2D::new(3.0, 5.0));}#[test]pub fn test_div_assign_scalar() {let mut p1: Point2D<f32> = Point2D::new(15.0, 25.0);p1 /= 5.0;assert_eq!(p1, Point2D::new(3.0, 5.0));}#[test]pub fn test_div_scale() {let p1 = Point2DCm::new(0.1, 0.2);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = p1 / cm_per_mm;assert_eq!(result, Point2DMm::new(1.0, 2.0));}#[test]pub fn test_div_assign_scale() {let mut p1 = Point2DMm::new(0.1, 0.2);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);p1 /= scale;assert_eq!(p1, Point2DMm::new(1.0, 2.0));}#[test]pub fn test_point_debug_formatting() {let n = 1.23456789;let p1 = Point2D::new(n, -n);let should_be = format!("({:.4}, {:.4})", n, -n);let got = format!("{:.4?}", p1);assert_eq!(got, should_be);}}mod euclid {use crate::default::{Point2D, Size2D};use crate::point2;#[test]pub fn test_rem_euclid() {let p = Point2D::new(7.0, -7.0);let s = Size2D::new(4.0, -4.0);assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));}#[test]pub fn test_div_euclid() {let p = Point2D::new(7.0, -7.0);let s = Size2D::new(4.0, -4.0);assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));}}
}#[cfg(test)]
mod point3d {use crate::default;use crate::default::Point3D;use crate::{point2, point3};#[cfg(feature = "mint")]use mint;#[test]pub fn test_min() {let p1 = Point3D::new(1.0, 3.0, 5.0);let p2 = Point3D::new(2.0, 2.0, -1.0);let result = p1.min(p2);assert_eq!(result, Point3D::new(1.0, 2.0, -1.0));}#[test]pub fn test_max() {let p1 = Point3D::new(1.0, 3.0, 5.0);let p2 = Point3D::new(2.0, 2.0, -1.0);let result = p1.max(p2);assert_eq!(result, Point3D::new(2.0, 3.0, 5.0));}#[test]pub fn test_conv_vector() {use crate::point3;for i in 0..100 {// We don't care about these values as long as they are not the same.let x = i as f32 * 0.012345;let y = i as f32 * 0.987654;let z = x * y;let p: Point3D<f32> = point3(x, y, z);assert_eq!(p.to_vector().to_point(), p);}}#[test]pub fn test_swizzling() {let p: default::Point3D<i32> = point3(1, 2, 3);assert_eq!(p.xy(), point2(1, 2));assert_eq!(p.xz(), point2(1, 3));assert_eq!(p.yz(), point2(2, 3));}#[test]pub fn test_distance_to() {let p1 = Point3D::new(1.0, 2.0, 3.0);let p2 = Point3D::new(2.0, 2.0, 3.0);assert_eq!(p1.distance_to(p2), 1.0);let p1 = Point3D::new(1.0, 2.0, 3.0);let p2 = Point3D::new(1.0, 4.0, 3.0);assert_eq!(p1.distance_to(p2), 2.0);let p1 = Point3D::new(1.0, 2.0, 3.0);let p2 = Point3D::new(1.0, 2.0, 6.0);assert_eq!(p1.distance_to(p2), 3.0);}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let p1 = Point3D::new(1.0, 3.0, 5.0);let pm: mint::Point3<_> = p1.into();let p2 = Point3D::from(pm);assert_eq!(p1, p2);}mod ops {use crate::default::Point3D;use crate::scale::Scale;use crate::{size3, vec3, Vector3D};pub enum Mm {}pub enum Cm {}pub type Point3DMm<T> = crate::Point3D<T, Mm>;pub type Point3DCm<T> = crate::Point3D<T, Cm>;#[test]pub fn test_neg() {assert_eq!(-Point3D::new(1.0, 2.0, 3.0), Point3D::new(-1.0, -2.0, -3.0));assert_eq!(-Point3D::new(0.0, 0.0, 0.0), Point3D::new(-0.0, -0.0, -0.0));assert_eq!(-Point3D::new(-1.0, -2.0, -3.0), Point3D::new(1.0, 2.0, 3.0));}#[test]pub fn test_add_size() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let p2 = size3(4.0, 5.0, 6.0);let result = p1 + p2;assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0));}#[test]pub fn test_add_assign_size() {let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);p1 += size3(4.0, 5.0, 6.0);assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0));}#[test]pub fn test_add_vec() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let p2 = vec3(4.0, 5.0, 6.0);let result = p1 + p2;assert_eq!(result, Point3DMm::new(5.0, 7.0, 9.0));}#[test]pub fn test_add_assign_vec() {let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);p1 += vec3(4.0, 5.0, 6.0);assert_eq!(p1, Point3DMm::new(5.0, 7.0, 9.0));}#[test]pub fn test_sub() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let p2 = Point3DMm::new(4.0, 5.0, 6.0);let result = p1 - p2;assert_eq!(result, Vector3D::<_, Mm>::new(-3.0, -3.0, -3.0));}#[test]pub fn test_sub_size() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let p2 = size3(4.0, 5.0, 6.0);let result = p1 - p2;assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0));}#[test]pub fn test_sub_assign_size() {let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);p1 -= size3(4.0, 5.0, 6.0);assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0));}#[test]pub fn test_sub_vec() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let p2 = vec3(4.0, 5.0, 6.0);let result = p1 - p2;assert_eq!(result, Point3DMm::new(-3.0, -3.0, -3.0));}#[test]pub fn test_sub_assign_vec() {let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);p1 -= vec3(4.0, 5.0, 6.0);assert_eq!(p1, Point3DMm::new(-3.0, -3.0, -3.0));}#[test]pub fn test_mul_scalar() {let p1: Point3D<f32> = Point3D::new(3.0, 5.0, 7.0);let result = p1 * 5.0;assert_eq!(result, Point3D::new(15.0, 25.0, 35.0));}#[test]pub fn test_mul_assign_scalar() {let mut p1: Point3D<f32> = Point3D::new(3.0, 5.0, 7.0);p1 *= 5.0;assert_eq!(p1, Point3D::new(15.0, 25.0, 35.0));}#[test]pub fn test_mul_scale() {let p1 = Point3DMm::new(1.0, 2.0, 3.0);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = p1 * cm_per_mm;assert_eq!(result, Point3DCm::new(0.1, 0.2, 0.3));}#[test]pub fn test_mul_assign_scale() {let mut p1 = Point3DMm::new(1.0, 2.0, 3.0);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);p1 *= scale;assert_eq!(p1, Point3DMm::new(0.1, 0.2, 0.3));}#[test]pub fn test_div_scalar() {let p1: Point3D<f32> = Point3D::new(15.0, 25.0, 35.0);let result = p1 / 5.0;assert_eq!(result, Point3D::new(3.0, 5.0, 7.0));}#[test]pub fn test_div_assign_scalar() {let mut p1: Point3D<f32> = Point3D::new(15.0, 25.0, 35.0);p1 /= 5.0;assert_eq!(p1, Point3D::new(3.0, 5.0, 7.0));}#[test]pub fn test_div_scale() {let p1 = Point3DCm::new(0.1, 0.2, 0.3);let cm_per_mm: Scale<f32, Mm, Cm> = Scale::new(0.1);let result = p1 / cm_per_mm;assert_eq!(result, Point3DMm::new(1.0, 2.0, 3.0));}#[test]pub fn test_div_assign_scale() {let mut p1 = Point3DMm::new(0.1, 0.2, 0.3);let scale: Scale<f32, Mm, Mm> = Scale::new(0.1);p1 /= scale;assert_eq!(p1, Point3DMm::new(1.0, 2.0, 3.0));}}mod euclid {use crate::default::{Point3D, Size3D};use crate::point3;#[test]pub fn test_rem_euclid() {let p = Point3D::new(7.0, -7.0, 0.0);let s = Size3D::new(4.0, -4.0, 12.0);assert_eq!(p.rem_euclid(&s), point3(3.0, 1.0, 0.0));assert_eq!((-p).rem_euclid(&s), point3(1.0, 3.0, 0.0));assert_eq!(p.rem_euclid(&-s), point3(3.0, 1.0, 0.0));}#[test]pub fn test_div_euclid() {let p = Point3D::new(7.0, -7.0, 0.0);let s = Size3D::new(4.0, -4.0, 12.0);assert_eq!(p.div_euclid(&s), point3(1.0, 2.0, 0.0));assert_eq!((-p).div_euclid(&s), point3(-2.0, -1.0, 0.0));assert_eq!(p.div_euclid(&-s), point3(-1.0, -2.0, 0.0));}}
}
二、Point2D結構體定義
代碼定義了一個名為 Point2D 的泛型結構體,它表示一個二維點,并且這個結構體被標記(或說是“攜帶”)了一個單位(unit)。這里的單位可能是用來表示坐標的某種度量單位或者其它信息,但具體是什么并不在這個結構體定義中明確給出,而是通過泛型參數 U 提供的。
1、源碼
#[repr(C)]
pub struct Point2D<T, U> {pub x: T,pub y: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}
2、泛型參數
Point2D<T, U> 有兩個泛型參數,T 和 U。T 用于表示點的坐標類型(比如 f32、f64、i32 等),而 U 用于表示與這個點相關的單位信息。
3、字段
- pub x: T:表示點的 X 坐標,其類型為泛型 T。
- pub y: T:表示點的 Y 坐標,其類型也為泛型 T。
- #[doc(hidden)] pub _unit: PhantomData< U >:這里使用了 PhantomData< U > 來攜帶單位信息 U 而不占用實際的內存空間。PhantomData 是一個在標準庫中定義的結構體,用于在泛型代碼中表示某種類型存在而不增加運行時的大小。#[doc(hidden)] 屬性意味著這個字段在生成的文檔中會被隱藏,可能是因為它對于最終用戶來說不是很有用或者是一個實現細節。
4、#[repr?] 屬性
這個屬性指定了結構體的內存布局應該與 C 語言中的結構體布局兼容。這對于與 C 語言代碼進行互操作時非常有用,因為它確保了結構體中字段的順序和內存對齊方式與 C 語言中的相同。
5、總結
Point2D<T, U> 是一個用于表示二維點的泛型結構體,它允許指定坐標的類型(T)和與該點相關的單位信息(U),而不增加任何實際的內存開銷用于存儲單位信息。
三、二維點特性實現
- Copy 實現:
對于任何實現了Copy特性的T類型,Point2D<T, U>也實現了Copy。這意味著Point2D的實例可以通過值復制,而不需要顯式的克隆操作。 - Clone 實現:
對于任何實現了Clone特性的T類型,Point2D<T, U>也實現了Clone。clone方法通過調用x和y的clone方法,創建了Point2D的一個新實例。 - 序列化和反序列化(依賴serde庫):
當啟用serde特性時,Point2D<T, U>可以被序列化和反序列化,只要T類型支持相應的操作。這允許Point2D實例被方便地轉換為JSON等格式,或從JSON等格式恢復。
四、二維點實用方法
- map 方法:
- map方法接受一個閉包f,并將Point2D的每個坐標值(x和y)作為參數傳遞給閉包,生成一個新的Point2D實例,其坐標類型為閉包返回的類型V。
- 這允許對點的坐標進行各種轉換,比如飽和減法(saturating_sub),而不改變點的類型參數U。
- zip 方法:
- zip方法接受另一個Point2D實例rhs和一個閉包f,對兩個點的對應坐標值應用閉包f,生成一個新的Vector2D實例(假設Vector2D是一個二維向量結構)。
- 這允許對兩個點的坐標進行成對的轉換,比如計算兩個點之間的差值(如示例中的飽和減法)。
- extend 方法:
- 將一個二維點擴展為一個三維點,通過指定一個z值。
- 參數z的類型與點的x和y坐標類型相同(T)。
- 返回Point3D<T, U>類型的新實例。
- to_vector 方法:
- 將點轉換為一個向量。這在數學上等同于從原點(0,0)減去該點。
- 返回Vector2D<T, U>類型的新實例。
- 使用PhantomData來攜帶單位類型U,但在此方法中未直接使用U。
- yx 方法:
- 交換點的x和y坐標。
- 返回與輸入相同類型的新實例(Self類型)。
- 示例代碼展示了如何使用這個方法。
- ceil 方法:
- 對點的每個坐標值向上取整(即,取不小于原數的最小整數)。
- 需要在T類型上實現Ceil trait(這通常意味著T是支持浮點運算的類型,如f32或f64)。
- 返回與輸入相同類型的新實例。
- 示例代碼展示了如何處理負數的向上取整。
- floor 方法:
- 對點的每個坐標值向下取整(即,取不大于原數的最大整數)。
- 需要在T類型上實現Floor trait(類似于Ceil)。
- 返回與輸入相同類型的新實例。
- 示例代碼展示了如何處理負數的向下取整。
-
線性插值方法 (lerp)
線性插值方法lerp接受當前點(self)、另一個點(other)和一個參數t,然后返回這兩個點之間的一個新點,這個點位于從當前點到另一個點的直線上,具體位置由t決定。t的取值范圍是實數,通常用于動畫和漸變效果中。當t=0.0時,返回當前點;當t=1.0時,返回另一個點;當t在0到1之間時,返回兩點之間的某個點;當t超出這個范圍時,返回的是當前點和另一個點之外的點。
代碼實現是正確的,但需要注意,當t為負值或大于1時,返回的點可能會超出原始兩點的范圍,這在某些情況下是有用的,但在其他情況下可能不是預期的行為。
轉換為整數類型的方法
to_i32和to_i64方法將二維點的坐標從浮點數轉換為整數(i32或i64),這里假設原始點的坐標是浮點數。這些方法簡單地將浮點數坐標截斷為整數,這可能會導致精度損失。在轉換之前,您可能希望使用round(), ceil(), 或floor()函數來決定如何處理小數部分。 -
min 方法
min方法的描述中似乎有些文本缺失,但從上下文中可以推斷,它應該返回一個新點,該點的每個坐標都是當前點和另一個點相應坐標中的最小值。這個方法的實現可能需要比較兩個點的x和y坐標,并返回一個新點,其x和y坐標分別是這兩個點對應坐標的最小值。 -
is_finite 方法
is_finite方法檢查點的x和y坐標是否都是有限的(不是NaN或無窮大)。這對于數值計算的安全性很重要,可以避免因為使用了無效數值而導致的不可預測行為。 -
add_size 方法
add_size方法將一個Size2D對象(表示寬度和高度)加到當前點上,返回一個新點。這個方法可能用于在圖形界面編程中調整點的位置,以適應新的大小或邊界。 -
距離計算 (distance_to 方法):
- 實現了兩個Point2D實例之間的距離計算。
- 它依賴于T類型實現了Real和Sub trait(Real不是Rust標準庫的一部分,可能來自某個數學庫,表示實數類型;Sub用于執行減法操作)。
- 方法內部通過減去另一個點并調用.length()方法計算距離。
- 取反 (Neg trait實現):
- 允許對Point2D實例進行取反操作(即坐標乘以-1)。
- 依賴于T類型實現了Neg trait。
- 與Size2D相加 (Add trait實現):
- 允許將Point2D與Size2D相加,可能用于將點的位置按照某個尺寸進行偏移。
- 依賴于T類型實現了Add trait。
- 就地與Size2D相加 (AddAssign trait實現):
- 類似于Add,但直接在原地修改Point2D實例。
- 依賴于T類型實現了AddAssign trait。
- 與Vector2D相加 (Add trait的另一個實現):
- 允許將Point2D與Vector2D相加,可能用于將點的位置按照某個向量進行移動。
- 依賴于T類型實現了Add trait。
- 零值 (Zero trait實現):
- 提供了Point2D的零值(原點)。
- 依賴于T類型實現了Zero trait。
- 四舍五入 (Round trait實現):
- 對Point2D的每個坐標進行四舍五入。
- 依賴于T類型實現了Round trait。
- 向上取整 (Ceil trait實現):
- 對Point2D的每個坐標進行向上取整。
- 依賴于T類型實現了Ceil trait。
- 向下取整 (Floor trait實現):
- 對Point2D的每個坐標進行向下取整。
- 依賴于T類型實現了Floor trait。
- 近似相等 (ApproxEq trait實現):
- 允許比較兩個Point2D實例是否在指定的誤差范圍內近似相等。
- 依賴于T類型實現了ApproxEq trait。
- rem_euclid方法:
+這個方法計算Point2D對象self相對于另一個Size2D對象other的歐幾里得余數。
- 歐幾里得余數與普通余數不同,它總是非負的。
- 方法接受一個&Size2D<T, U>作為參數,返回一個新的Point2D<T, U>,其中每個坐標都是self對應坐標對other對應維度的歐幾里得余數。
- div_euclid方法:
- 這個方法計算Point2D對象self相對于另一個Size2D對象other的歐幾里得除法結果。
- euclid除法返回的是商,即self每個坐標除以other對應維度的整數部分。
- 同樣,方法接受一個&Size2D<T, U>作為參數,返回一個新的Point2D<T, U>。
- 實現Point2D<T, U>到[T; 2]的轉換:
- 通過實現From<Point2D<T, U>> for [T; 2] trait,允許將Point2D轉換為包含兩個T類型元素的數組。
- 轉換直接取Point2D的x和y坐標作為數組的兩個元素。
- 實現[T; 2]到Point2D<T, U>的轉換:
- 通過實現From<[T; 2]> for Point2D<T, U> trait,允許將包含兩個T類型元素的數組轉換為Point2D。
- 轉換將數組的前兩個元素分別作為Point2D的x和y坐標。
- 實現Point2D<T, U>到(T, T)的轉換:
- 通過實現From<Point2D<T, U>> for (T, T) trait,允許將Point2D轉換為包含兩個T類型元素的元組。
- 轉換與到數組的轉換類似,取Point2D的x和y坐標作為元組的兩個元素。
- 實現(T, T)到Point2D<T, U>的轉換:
- 通過實現From<(T, T)> for Point2D<T, U> trait,允許將包含兩個T類型元素的元組轉換為Point2D。
- 轉換將元組的兩個元素分別作為Point2D的x和y坐標。
五、Point3D結構體
比Point2D多一個z值,方法與Point2D相似。