Digit sum
33.57% 2000ms 131072K
A digit sum S_b(n)S
b
?
(n) is a sum of the base-bb digits of nn. Such as S_{10}(233) = 2 + 3 + 3 = 8S
10
?
(233)=2+3+3=8, S_{2}(8)=1 + 0 + 0 = 1S
2
?
(8)=1+0+0=1, S_{2}(7)=1 + 1 + 1 = 3S
2
?
(7)=1+1+1=3.
Given NN and bb, you need to calculate \sum_{n=1}^{N} S_b(n)∑
n=1
N
?
S
b
?
(n).
InputFile
The first line of the input gives the number of test cases, TT. TT test cases follow. Each test case starts with a line containing two integers NN and bb.
1 \leq T \leq 1000001≤T≤100000
1 \leq N \leq 10^61≤N≤10
6
2 \leq b \leq 102≤b≤10
OutputFile
For each test case, output one line containing Case #x: y, where xx is the test case number (starting from 11) and yy is answer.
樣例輸入 復制
2
10 10
8 2
樣例輸出 復制
Case #1: 46
Case #2: 13
題目大意:
先輸入一個整數TTT,代表有TTT組測試數據,下面TTT行每行輸入兩個整數n,bn,bn,b,先假設函數f(x,b)f(x,b)f(x,b)為xxx轉換為bbb進制后各數位的和,例如f(8,2)=1,f(10,10)=1f(8,2)=1,f(10,10)=1f(8,2)=1,f(10,10)=1,求∑i=1nf(i,b)\sum_{i=1}^nf(i,b)∑i=1n?f(i,b)
解題思路:
此題無需想的太復雜,因為1≤n≤1e61\le n\le 1e61≤n≤1e6,且2≤b≤102\le b\le 102≤b≤10,所以可以將1e61e61e6以內所有的情況全都暴力打出來,最后O(1)O(1)O(1)輸出即可。
代碼:
//#pragma GCC optimize(3,"Ofast","inline")
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set>
#include <utility>
#include <sstream>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define inf 0x3f3f3f3f
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define lep(i,l,r) for(int i=l;i>=r;i--)
#define ms(arr) memset(arr,0,sizeof(arr))
//priority_queue<int,vector<int> ,greater<int> >q;
const int maxn = (int)1e5 + 5;
const ll mod = 1e9+7;
int get_sum(int n,int b) {int sum=0;while(n) {sum+=n%b;n=n/b;}return sum;
}
int sum[1000100][11];
int main()
{#ifndef ONLINE_JUDGEfreopen("in.txt", "r", stdin);freopen("out.txt", "w", stdout);#endif//ios::sync_with_stdio(0),cin.tie(0);rep(i,1,1000000) {rep(j,2,10) {sum[i][j]=sum[i-1][j]+get_sum(i,j);}}int T;scanf("%d",&T);rep(t,1,T) {int n,b;scanf("%d %d",&n,&b);printf("Case #%d: %d\n",t,sum[n][b]);}return 0;
}