java開源圖像處理ku_83 項開源視覺 SLAM 方案夠你用了嗎?

原標題:83 項開源視覺 SLAM 方案夠你用了嗎?

公眾號:3D視覺工坊

主要關注:3D視覺算法、SLAM、vSLAM、計算機視覺、深度學習、自動駕駛、圖像處理以及技術干貨分享

運營者和嘉賓介紹:運營者來自國內一線大廠的算法工程師,深研3D視覺、vSLAM、計算機視覺、點云處理、深度學習、自動駕駛、圖像處理、三維重建等領域,特邀嘉賓包括國內外知名高校的博士碩士,曠視、商湯、百度、阿里等就職的算法大佬,歡迎一起交流學習~

前言

1. 本文由知乎作者小吳同學同步發布于https://zhuanlan.zhihu.com/p/115599978/并持續更新。

2. 本文簡單將各種開源視覺SLAM方案分為以下 7 類(固然有不少文章無法恰當分類):

·Geometric SLAM

·Semantic / Learning SLAM

·Multi-Landmarks / Object SLAM

·VIO / VISLAM

·Dynamic SLAM

·Mapping

·Optimization

3. 由于本人自 2019 年 3 月開始整理,所以以下的代碼除了經典的框架之外基本都集中在 19-20 年;此外個人比較關注 VO、物體級 SLAM 和多路標 SLAM,所以以下內容收集的也不完整,無法涵蓋視覺SLAM 的所有研究,僅作參考。

一、Geometric SLAM(20 項)

這一類是傳統的基于特征點、直接法或半直接法的 SLAM,雖說傳統,但 2019 年也新誕生了 9 個開源方案。

1. PTAM

論文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed andAugmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposiumon. IEEE, 2007: 225-234.

代碼:https://github.com/Oxford-PTAM/PTAM-GPL

工程地址:http://www.robots.ox.ac.uk/~gk/PTAM/

作者其他研究:http://www.robots.ox.ac.uk/~gk/publications.html

2. S-PTAM(雙目 PTAM)

論文:Taihú Pire,Thomas Fischer, Gastón Castro,Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and AutonomousSystems, 2017.

代碼:https://github.com/lrse/sptam

作者其他論文:Castro G,Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM throughconstrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.

3. MonoSLAM

論文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM:Real-time single camera SLAM[J]. IEEE transactions on patternanalysis and machine intelligence, 2007, 29(6): 1052-1067.

代碼:https://github.com/hanmekim/SceneLib2

4. ORB-SLAM2

論文:Mur-Artal R, Tardós J D. Orb-slam2: Anopen-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEETransactions on Robotics, 2017, 33(5): 1255-1262.

代碼:https://github.com/raulmur/ORB_SLAM2

作者其他論文:

單目半稠密建圖:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

VIORB:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

多地圖:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: arobust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.

以下 5, 6, 7, 8 幾項是 TUM 計算機視覺組全家桶

5. DSO

論文:Engel J, Koltun V, Cremers D. Direct sparseodometry[J]. IEEE transactions on pattern analysis and machineintelligence, 2017, 40(3): 611-625.

代碼:https://github.com/JakobEngel/dso

雙目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry withstereo cameras[C]//Proceedings of the IEEE International Conference onComputer Vision. 2017: 3903-3911.

VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparsevisual-inertial odometry using dynamic marginalization[C]//2018 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2018:2510-2517.

6. LDSO

高翔在 DSO 上添加閉環的工作

論文:Gao X, Wang R, Demmel N, et al. LDSO: Directsparse odometry with loop closure[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:2198-2204.

代碼:https://github.com/tum-vision/LDSO

7. LSD-SLAM

論文:Engel J, Sch?ps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//Europeanconference on computer vision. Springer, Cham, 2014: 834-849.

代碼:https://github.com/tum-vision/lsd_slam

8. DVO-SLAM

論文:Kerl C, Sturm J, Cremers D. Dense visualSLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conferenceon Intelligent Robots and Systems. IEEE, 2013: 2100-2106.

代碼 1:https://github.com/tum-vision/dvo_slam

代碼 2:https://github.com/tum-vision/dvo

其他論文:

Kerl C, Sturm J,Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEEinternational conference on robotics and automation. IEEE, 2013:3748-3754.

Steinbrücker F,Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEEinternational conference on computer vision workshops (ICCV Workshops). IEEE, 2011:719-722.

9. SVO

蘇黎世大學機器人與感知課題組

論文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEEinternational conference on robotics and automation (ICRA). IEEE, 2014:15-22.

代碼:https://github.com/uzh-rpg/rpg_svo

Forster C, ZhangZ, Gassner M, et al. SVO: Semidirect visual odometry for monocular andmulticamera systems[J]. IEEE Transactions on Robotics, 2016,33(2): 249-265.

10. DSM

論文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparsemapping[J]. arXiv preprint arXiv:1904.06577, 2019.

代碼:https://github.com/jzubizarreta/dsm

11. openvslam

論文:Sumikura S,Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedingsof the 27th ACM International Conference on Multimedia. 2019: 2292-2295.

代碼:https://github.com/xdspacelab/openvslam

12. se2lam(地面車輛位姿估計的視覺里程計)

論文:Zheng F, Liu Y H. Visual-OdometricLocalization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:3556-3562.

代碼:https://github.com/izhengfan/se2lam

作者的另外一項工作

論文:Zheng F, Tang H,Liu Y H. Odometry-vision-basedground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEEtransactions on cybernetics, 2018, 49(7): 2652-2663.

代碼:https://github.com/izhengfan/se2clam

13. GraphSfM(基于圖的并行大尺度 SFM)

論文:Chen Y, Shen S,Chen Y, et al. Graph-BasedParallel Large Scale Structure from Motion[J]. arXivpreprint arXiv:1912.10659, 2019.

代碼:https://github.com/AIBluefisher/GraphSfM

14. LCSD_SLAM(松耦合的半直接法單目 SLAM)

論文:Lee S H, Civera J. Loosely-Coupledsemi-direct monocular SLAM[J]. IEEE Robotics and AutomationLetters, 2018, 4(2): 399-406.

代碼:https://github.com/sunghoon031/LCSD_SLAM;谷歌學術 ;演示視頻

作者另外一篇關于單目尺度的文章代碼開源:Lee S H, deCroon G. Stability-based scale estimation for monocular SLAM[J]. IEEERobotics and Automation Letters, 2018, 3(2): 780-787.

15. RESLAM(基于邊的 SLAM)

論文:Schenk F, Fraundorfer F. RESLAM: Areal-time robust edge-based SLAM system[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 154-160.

代碼:https://github.com/fabianschenk/RESLAM

16. scale_optimization(將單目 DSO 拓展到雙目)

論文:Mo J, Sattar J. ExtendingMonocular Visual Odometry to Stereo Camera System by Scale Optimization[C].International Conference on Intelligent Robots and Systems (IROS), 2019.

代碼:https://github.com/jiawei-mo/scale_optimization

17. BAD-SLAM(直接法 RGB-D SLAM)

論文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2019:134-144.

代碼:https://github.com/ETH3D/badslam

18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

論文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedingsof the IEEE International Conference on Computer Vision. 2019:1110-1120.

代碼:https://github.com/zdzhaoyong/GSLAM

19. ARM-VO(運行于 ARM 處理器上的單目 VO)

論文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for groundvehicles on ARM CPUs[J]. Machine Vision and Applications, 2019:1-10.

代碼:https://github.com/zanazakaryaie/ARM-VO

20. cvo-rgbd(直接法 RGB-D VO)

論文:Ghaffari M, Clark W, Bloch A, et al. ContinuousDirect Sparse Visual Odometry from RGB-D Images[J]. arXivpreprint arXiv:1904.02266, 2019.

代碼:https://github.com/MaaniGhaffari/cvo-rgbd

二、Semantic / Learning SLAM(12 項)

SLAM 與深度學習相結合的工作當前主要體現在兩個方面,一方面是將語義信息參與到建圖、位姿估計等環節中,另一方面是端到端地完成 SLAM 的某一個步驟(比如 VO,閉環等)。個人對后者沒太關注,也同樣歡迎大家在issue中分享。

21. MsakFusion

論文:Runz M, Buffier M, Agapito L. Maskfusion:Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEEInternational Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018:10-20.

代碼:https://github.com/martinruenz/maskfusion

22. SemanticFusion

論文:McCormac J, Handa A, Davison A, et al. Semanticfusion:Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEEInternational Conference on Robotics and automation (ICRA). IEEE, 2017:4628-4635.

代碼:https://github.com/seaun163/semanticfusion

23. semantic_3d_mapping

論文:Yang S, Huang Y, Scherer S. Semantic 3Doccupancy mapping through efficient high order CRFs[C]//2017IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2017: 590-597.

代碼:https://github.com/shichaoy/semantic_3d_mapping

24. Kimera(實時度量與語義定位建圖開源庫)

論文:Rosinol A, AbateM, Chang Y, et al. Kimera: anOpen-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXivpreprint arXiv:1910.02490, 2019.

代碼:https://github.com/MIT-SPARK/Kimera

25. NeuroSLAM(腦啟發式 SLAM)

論文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3Denvironments[J]. Biological Cybernetics, 2019: 1-31.

代碼:https://github.com/cognav/NeuroSLAM

第四作者就是 Rat SLAM 的作者,文章也比較了十余種腦啟發式的 SLAM

26. gradSLAM(自動分區的稠密 SLAM)

論文:Jatavallabhula K M, Iyer G, Paull L. gradSLAM:Dense SLAM meets Automatic Differentiation[J]. arXivpreprint arXiv:1910.10672, 2019.

代碼(預計 20 年 4 月放出):https://github.com/montrealrobotics/gradSLAM

27. ORB-SLAM2 + 目標檢測/分割的方案語義建圖

https://github.com/floatlazer/semantic_slam

https://github.com/qixuxiang/orb-slam2_with_semantic_labelling

https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic

28. SIVO(語義輔助特征選擇)

論文:Ganti P, Waslander S. NetworkUncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16thConference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.

代碼:https://github.com/navganti/SIVO

29. FILD(臨近圖增量式閉環檢測)

論文:Shan An, Guangfu Che, Fangru Zhou,Xianglong Liu, Xin Ma, Yu Chen.Fast and Incremental Loop Closure Detection usingProximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS2019)

代碼:https://github.com/AnshanTJU/FILD

30. object-detection-sptam(目標檢測與雙目 SLAM)

論文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo VisualSLAM System[J]. Journal of Intelligent & Robotic Systems, 2019:1-10.

代碼:https://github.com/CIFASIS/object-detection-sptam

31. Map Slammer(單目深度估計 + SLAM)

論文:Torres-Camara J M, Escalona F, Gomez-DonosoF, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps withEstimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019:563-574.

代碼:https://github.com/jmtc7/mapSlammer

32. NOLBO(變分模型的概率 SLAM)

論文:Yu H, Lee B. Not Only LookBut Observe: Variational Observation Model of Scene-Level 3D Multi-ObjectUnderstanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.

代碼:https://github.com/bogus2000/NOLBO

三、Multi-Landmarks / Object SLAM(12 項)

其實多路標的點、線、平面 SLAM 和物體級 SLAM 完全可以分類在 Geometric SLAM 和 Semantic SLAM 中,但個人對這一方向比較感興趣(也是我的研究生課題),所以將其獨立出來,開源方案相對較少,但很有意思。

33. PL-SVO(點線 SVO)

論文:Gomez-Ojeda R, Briales J, Gonzalez-JimenezJ. PL-SVO: Semi-direct Monocular Visual Odometry by combiningpoints and line segments[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:4211-4216.

代碼:https://github.com/rubengooj/pl-svo

34. stvo-pl(雙目點線 VO)

論文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilisticcombination of points and line segments[C]//2016 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.

代碼:https://github.com/rubengooj/stvo-pl

35. PL-SLAM(點線 SLAM)

論文:Gomez-Ojeda R, Zu?iga-No?l D, Moreno F A,et al. PL-SLAM: aStereo SLAM System through the Combination of Points and Line Segments[J]. arXivpreprint arXiv:1705.09479, 2017.

代碼:https://github.com/rubengooj/pl-slam

Gomez-Ojeda R,Moreno F A, Zu?iga-No?l D, et al.PL-SLAM: a stereo SLAM system through the combination ofpoints and line segments[J]. IEEE Transactions on Robotics, 2019,35(3): 734-746.

36. PL-VIO

論文:He Y, Zhao J, Guo Y, et al. PL-VIO:Tightly-coupled monocular visual–inertial odometry using point and linefeatures[J]. Sensors, 2018, 18(4): 1159.

代碼:https://github.com/HeYijia/PL-VIO

VINS + 線段:https://github.com/Jichao-Peng/VINS-Mono-Optimization

37. lld-slam(用于 SLAM 的可學習型線段描述符)

論文:Vakhitov A, Lempitsky V. Learnable line segment descriptor for visual SLAM[J]. IEEEAccess, 2019, 7: 39923-39934.

代碼:https://github.com/alexandervakhitov/lld-slam;Video

點線結合的工作還有很多,國內的比如 + 上交鄒丹平老師的 Zou D, Wu Y, Pei L, et al.StructVIO:visual-inertial odometry with structural regularity of man-made environments[J]. IEEETransactions on Robotics, 2019, 35(4): 999-1013. + 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visualSLAM with point and line features[C]//2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2017:1775-1782.

38. PlaneSLAM

論文:Wietrzykowski J. On the representation of planes for efficient graph-basedslam with high-level features[J]. Journal of Automation MobileRobotics and Intelligent Systems, 2016, 10.

代碼:https://github.com/LRMPUT/PlaneSLAM

作者另外一項開源代碼,沒有找到對應的論文:https://github.com/LRMPUT/PUTSLAM

39. Eigen-Factors(特征因子平面對齊)

論文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame andTime-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2019:1278-1284.

代碼:https://gitlab.com/gferrer/eigen-factors-iros2019

40. PlaneLoc

論文:Wietrzykowski J, Skrzypczyński P. PlaneLoc:Probabilistic global localization in 3-D using local planar features[J]. Roboticsand Autonomous Systems, 2019, 113: 160-173.

代碼:https://github.com/LRMPUT/PlaneLoc

41. Pop-up SLAM

論文:Yang S, Song Y, Kaess M, et al. Pop-up slam:Semantic monocular plane slam for low-texture environments[C]//2016IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2016: 1222-1229.

代碼:https://github.com/shichaoy/pop_up_slam

42. Object SLAM

論文:Mu B, Liu S Y, Paull L, et al. Slam withobjects using a nonparametric pose graph[C]//2016 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2016:4602-4609.

代碼:https://github.com/BeipengMu/objectSLAM

43. voxblox-plusplus(物體級體素建圖)

論文:Grinvald M, Furrer F, Novkovic T, et al. Volumetricinstance-aware semantic mapping and 3D object discovery[J]. IEEERobotics and Automation Letters, 2019, 4(3): 3037-3044.

代碼:https://github.com/ethz-asl/voxblox-plusplus

44. Cube SLAM

論文:Yang S, Scherer S. Cubeslam:Monocular 3-d object slam[J]. IEEE Transactions on Robotics, 2019,35(4): 925-938.

代碼:https://github.com/shichaoy/cube_slam

也有很多有意思的但沒開源的物體級 SLAM

Ok K, Liu K,Frey K, et al. RobustObject-based SLAM for High-speed Autonomous Navigation[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:669-675.

Li J, Meger D,Dudek G. SemanticMapping for View-Invariant Relocalization[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:7108-7115.

Nicholson L,Milford M, Sünderhauf N. Quadricslam:Dual quadrics from object detections as landmarks in object-oriented slam[J]. IEEERobotics and Automation Letters, 2018, 4(1): 1-8.

四、VIO / VISLAM(10 項)

在傳感器融合方面只關注了視覺 + 慣導,其他傳感器像 LiDAR,GPS 關注較少(SLAM 太復雜啦 -_-!)。視慣融合的新工作也相對較少,基本一些經典的方案就夠用了。

45. msckf_vio

論文:Sun K, Mohta K, Pfrommer B, et al. Robust stereovisual inertial odometry for fast autonomous flight[J]. IEEERobotics and Automation Letters, 2018, 3(2): 965-972.

代碼:https://github.com/KumarRobotics/msckf_vio

46. rovio

論文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-basedapproach[C]//2015 IEEE/RSJ international conference onintelligent robots and systems (IROS). IEEE, 2015: 298-304.

代碼:https://github.com/ethz-asl/rovio

47. R-VIO

論文:Huai Z, Huang G. Robocentricvisual-inertial odometry[C]//2018 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2018:6319-6326.

代碼:https://github.com/rpng/R-VIO

48. okvis

論文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinearoptimization[J]. The International Journal of Robotics Research, 2015,34(3): 314-334.

代碼:https://github.com/ethz-asl/okvis

49. VIORB

論文:Mur-Artal R, Tardós J D. Visual-inertialmonocular SLAM with map reuse[J]. IEEE Robotics and AutomationLetters, 2017, 2(2): 796-803.

代碼:https://github.com/jingpang/LearnVIORB(VIORB 本身是沒有開源的,這是王京大佬復現的一個版本)

50. VINS-mono

論文:Qin T, Li P, Shen S. Vins-mono: Arobust and versatile monocular visual-inertial state estimator[J]. IEEETransactions on Robotics, 2018, 34(4): 1004-1020.

代碼:https://github.com/HKUST-Aerial-Robotics/VINS-Mono

雙目版 VINS-Fusion:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

移動段 VINS-mobile:https://github.com/HKUST-Aerial-Robotics/VINS-Mobile

51. VINS-RGBD

論文:Shan Z, Li R, Schwertfeger S. RGBD-InertialTrajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019,19(10): 2251.

代碼:https://github.com/STAR-Center/VINS-RGBD

52. Open-VINS

論文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertialestimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation:Challenges and Applications, Macau, China. IROS 2019.

代碼:https://github.com/rpng/open_vins

53. versavis(多功能的視慣傳感器系統)

論文:Tschopp F, RinerM, Fehr M, et al. VersaVIS—AnOpen Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020,20(5): 1439.

代碼:https://github.com/ethz-asl/versavis

54. CPI(視慣融合的封閉式預積分)

論文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-basedvisual–inertial navigation[J]. The International Journal ofRobotics Research, 2018.

代碼:https://github.com/rpng/cpi

五、Dynamic SLAM(5 項)

動態 SLAM 也是一個很值得研究的話題,這里不太好分類,很多工作用到了語義信息或者用來三維重建,收集的方案相對較少,歡迎補充issue。

55. DynamicSemanticMapping(動態語義建圖)

論文:Kochanov D, O?ep A, Stückler J, et al. Scene flow propagation for semantic mapping and objectdiscovery in dynamic street scenes[C]//Intelligent Robots and Systems(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016:1785-1792.

代碼:https://github.com/ganlumomo/DynamicSemanticMapping

56. DS-SLAM(動態語義 SLAM)

論文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: Asemantic visual SLAM towards dynamic environments[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 1168-1174.

代碼:https://github.com/ivipsourcecode/DS-SLAM

57. Co-Fusion(實時分割與跟蹤多物體)

論文:Rünz M, Agapito L. Co-fusion:Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEEInternational Conference on Robotics and Automation (ICRA). IEEE, 2017:4471-4478.

代碼:https://github.com/martinruenz/co-fusion

58. DynamicFusion

論文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigidscenes in real-time[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2015: 343-352.

代碼:https://github.com/mihaibujanca/dynamicfusion

59. ReFusion(動態場景利用殘差三維重建)

論文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3DReconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXivpreprint arXiv:1905.02082, 2019.

代碼:https://github.com/PRBonn/refusion

六、Mapping(18 項)

針對建圖的工作一方面是利用幾何信息進行稠密重建,另一方面很多工作利用語義信息達到了很好的語義重建效果,三維重建本身就是個很大的話題,開源代碼也很多,以下方案收集地可能也不太全。

60. InfiniTAM(跨平臺 CPU 實時重建)

論文:Prisacariu V A,K?hler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3dreconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.

代碼:https://github.com/victorprad/InfiniTAM

61. BundleFusion

論文:Dai A, Nie?ner M, Zollh?fer M, et al. Bundlefusion:Real-time globally consistent 3d reconstruction using on-the-fly surfacereintegration[J]. ACM Transactions on Graphics (TOG), 2017,36(4): 76a.

代碼:https://github.com/niessner/BundleFusion

62. KinectFusion

論文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10thIEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011:127-136.

代碼:https://github.com/chrdiller/KinectFusionApp

63. ElasticFusion

論文:Whelan T, Salas-Moreno R F, Glocker B, etal. ElasticFusion: Real-time dense SLAM and light sourceestimation[J]. The International Journal of Robotics Research, 2016,35(14): 1697-1716.

代碼:https://github.com/mp3guy/ElasticFusion

64. Kintinuous

ElasticFusion 同一個團隊的工作,帝國理工 Stefan Leutenegger

論文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetricfusion[J]. The International Journal of Robotics Research, 2015,34(4-5): 598-626.

代碼:https://github.com/mp3guy/Kintinuous

65. ElasticReconstruction

論文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2015:5556-5565.

代碼:https://github.com/qianyizh/ElasticReconstruction

66. FlashFusion

論文:Han L, Fang L. FlashFusion:Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.

代碼(一直沒放出來):https://github.com/lhanaf/FlashFusion

67. RTAB-Map(激光視覺稠密重建)

論文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneouslocalization and mapping library for large‐scale and long‐term online operation[J]. Journal ofField Robotics, 2019, 36(2): 416-446.

代碼:https://github.com/introlab/rtabmap

68. RobustPCLReconstruction(戶外稠密重建)

論文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-ScaleOutdoor Scenes[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. 2019: 9690-9698.

代碼:https://github.com/ziquan111/RobustPCLReconstruction

69. plane-opt-rgbd(室內平面重建)

論文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texturefor Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition Workshops. 2019: 49-53.

代碼:https://github.com/chaowang15/plane-opt-rgbd

70. DenseSurfelMapping(稠密表面重建)

論文:Wang K, Gao F, Shen S. Real-timescalable dense surfel mapping[C]//2019 International Conference onRobotics and Automation (ICRA). IEEE, 2019: 6919-6925.

代碼:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

71. surfelmeshing(網格重建)

論文:Sch?ps T, Sattler T, Pollefeys M. Surfelmeshing:Online surfel-based mesh reconstruction[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2019.

代碼:https://github.com/puzzlepaint/surfelmeshing

72. DPPTAM(單目稠密重建)

論文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from amonocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015(ART-2015-92153).

代碼:https://github.com/alejocb/dpptam

相關研究:基于超像素的單目 SLAM:UsingSuperpixels in Monocular SLAM ICRA 2014 ;谷歌學術

73. VI-MEAN(單目視慣稠密重建)

論文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots usingvisual-inertial fusion[C]//2017 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2017: 4552-4559.

代碼:https://github.com/dvorak0/VI-MEAN

74. REMODE(單目概率稠密重建)

論文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction inreal time[C]//2014 IEEE International Conference on Robotics andAutomation (ICRA). IEEE, 2014: 2609-2616.

原始開源代碼:https://github.com/uzh-rpg/rpg_open_remode

與 ORB-SLAM2 結合版本:https://github.com/ayushgaud/ORB_SLAM2https://github.com/ayushgaud/ORB_SLAM2

75. DeepFactors(實時的概率單目稠密 SLAM)

帝國理工學院戴森機器人實驗室

論文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors:Real-Time Probabilistic Dense Monocular SLAM[J]. arXivpreprint arXiv:2001.05049, 2020.

代碼:https://github.com/jczarnowski/DeepFactors(還未放出)

其他論文:Bloesch M,Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representationfor dense visual SLAM[C]//Proceedings of the IEEE conference oncomputer vision and pattern recognition. 2018: 2560-2568.

76. probabilistic_mapping(單目概率稠密重建)

港科沈邵劼老師團隊

論文:Ling Y, Wang K, Shen S. Probabilisticdense reconstruction from a moving camera[C]//2018IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).IEEE, 2018: 6364-6371.

代碼:https://github.com/ygling2008/probabilistic_mapping

另外一篇稠密重建文章的代碼一直沒放出來Github:Ling Y, Shen S. Real‐timedense mapping for online processing and navigation[J]. Journal ofField Robotics, 2019, 36(5): 1004-1036.

77. ORB-SLAM2 單目半稠密建圖

論文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly AccurateFeature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015,2015.

代碼(本身沒有開源,賀博復現的一個版本):https://github.com/HeYijia/ORB_SLAM2

加上線段之后的半稠密建圖

論文:He S, Qin X, Zhang Z, et al. Incremental3d line segment extraction from semi-dense slam[C]//2018 24thInternational Conference on Pattern Recognition (ICPR). IEEE, 2018:1658-1663.

代碼:https://github.com/shidahe/semidense-lines

作者在此基礎上用于指導遠程抓取操作的一項工作:https://github.com/atlas-jj/ORB-SLAM-free-space-carving

七、Optimization(6 項)

個人感覺優化可能是 SLAM 中最難的一部分了吧 +_+ ,我們一般都是直接用現成的因子圖、圖優化方案,要創新可不容易,分享山川小哥d的入坑指南https://zhuanlan.zhihu.com/p/53972892。

78. 后端優化庫

GTSAM:https://github.com/borglab/gtsam

g2o:https://github.com/RainerKuemmerle/g2o

ceres:http://ceres-solver.org/

79. ICE-BA

論文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundleadjustment for visual-inertial slam[C]//Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition. 2018: 1974-1982.

代碼:https://github.com/baidu/ICE-BA

80. minisam(因子圖最小二乘優化框架)

論文:Dong J, Lv Z. miniSAM: AFlexible Factor Graph Non-linear Least Squares Optimization Framework[J]. arXivpreprint arXiv:1909.00903, 2019.

代碼:https://github.com/dongjing3309/minisam

81. SA-SHAGO(幾何基元圖優化)

論文:Aloise I, Della Corte B, Nardi F, et al. Systematic Handling of Heterogeneous Geometric Primitivesin Graph-SLAM Optimization[J]. IEEE Robotics and AutomationLetters, 2019, 4(3): 2738-2745.

代碼:https://srrg.gitlab.io/sashago-website/index.html#

82. MH-iSAM2(SLAM 優化器)

論文:Hsiao M, Kaess M. MH-iSAM2:Multi-hypothesis iSAM using Bayes Tree and Hypo-tree[C]//2019International Conference on Robotics and Automation (ICRA). IEEE, 2019:1274-1280.

代碼:https://bitbucket.org/rpl_cmu/mh-isam2_lib/src/master/

83. MOLA(用于定位和建圖的模塊化優化框架)

論文:Blanco-Claraco J L. A ModularOptimization Framework for Localization and Mapping[J]. Proc. ofRobotics: Science and Systems (RSS), FreiburgimBreisgau, Germany, 2019,2.

代碼:https://github.com/MOLAorg/mola

責任編輯:

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/529681.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/529681.shtml
英文地址,請注明出處:http://en.pswp.cn/news/529681.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

java 方法的拆分_java – 字符串拆分和比較 – 最快的方法

>將輸入讀入byte []數組以將指針保持在代碼的一側.>逐字節讀取,計算整數元素&#xff1a;int b inputBytes[p];int d b - 0;if (0 < d) {if (d < 9) {element element * 10 d;} else {// b :}} else {// b ,// add element to the hash; element 0;...}if (…

java sql異常_java.sql.SQLException: Io 異常: Got minus one from a

java.sql.SQLException: Io 異常: Got minus one from a read callat oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:111)at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:145)at oracle.jdbc.driver.DatabaseError.thro…

java 攔截器ajax_(轉)攔截器深入實踐 - JAVA XML JAVASCRIPT AJAX CSS - BlogJava

Interceptor的定義我們來看一下Interceptor的接口的定義&#xff1a;Java代碼 publicinterfaceInterceptorextendsSerializable {/*** Called to let an interceptor clean up any resources it has allocated.*/voiddestroy();/*** Called after an interceptor is created, b…

php學的是什么意思_為什么要學習PHP?到底什么是PHP?

為什么要學習PHP?到底什么是PHP?PHP可以做什么?相信這樣的問題困擾著很多的人&#xff0c;在我沒工作之前&#xff0c;都沒有聽說過PHP&#xff0c;自從工作后&#xff0c;慢慢接觸到代碼&#xff0c;慢慢知道什么是PHP。PHP是做網站一種語言&#xff0c;很多工程師都使用PH…

php 多數據庫聯合查詢,php如何同時連接多個數據庫_PHP教程

下面是一個函數能夠保證連接多個數據庫的下不同的表的函數&#xff0c;可以收藏一下&#xff0c;比較實用&#xff0c;測試過是有用的。function mysql_oper($oper,$db,$table,$where1,$limit10){$connmysql_connect(localhost,like,admin,true) or mysql_error();mysql_select…

java判斷有沒有修改,java字節碼判斷對象應用是否被修改

原創1 背景在學習并發的時候看到了ConcurrentLinkedQueue隊列的源碼&#xff0c;剛開始的時候是看網上的帖子&#xff0c;然后就到IDE里邊看源碼&#xff0c;發現offer()方法在1.7版的時候有過修改。樓主的問題不是整個方法&#xff0c;而是其中的一截代碼“(t ! (t tail))”&…

php接口 含義,php晉級必備:一文讀懂php接口特點和使用!

PHP接口與類是什么關系&#xff1f;前面提到了php中抽象類和抽象方法&#xff0c;今天給大家談談php中接口技術。在PHP中每個類只能繼承一個父類&#xff0c;如果聲明的新類繼承了抽象類實現了以后&#xff0c;這個新類就不能有其它的父類了。但是在實際中需要繼承多個類實現功…

php獲取不重復的隨機數字,php如何生成不重復的隨機數字

【摘要】PHP即“超文本預處理器”&#xff0c;是一種通用開源腳本語言。PHP是在服務器端執行的腳本語言&#xff0c;與C語言類似&#xff0c;是常用的網站編程語言。PHP獨特的語法混合了C、Java、Perl以及 PHP 自創的語法。下面是php如何生成不重復的隨機數字&#xff0c;讓我們…

java 素數乘積,求助2424379123 = 兩個素數的乘積,求這兩個素數?

該樓層疑似違規已被系統折疊 隱藏此樓查看此樓import java.util.ArrayList;import java.util.Date;public class Test {static ArrayList list new ArrayList();/*** 初始化素數表* return*/public static ArrayList initArrayList() {list.add(2);list.add(3);list.add(5);li…

php header什么意思,php header是什么意思

header函數在PHP中是發送一些頭部信息的, 我們可以直接使用它來做301跳轉等&#xff0c;下面我來總結關于header函數用法與一些常用見問題解決方法。發送一個原始 HTTP 標頭[Http Header]到客戶端。標頭 (header) 是服務器以 HTTP 協義傳 HTML 資料到瀏覽器前所送出的字串&…

matlab dct稀疏系數,Matlab DCT詳解

轉自&#xff1a;http://blog.csdn.net/ahafg/article/details/48808443DCT變換DCT又稱離散余弦變換&#xff0c;是一種塊變換方式&#xff0c;只使用余弦函數來表達信號&#xff0c;與傅里葉變換緊密相關。常用于圖像數據的壓縮&#xff0c;通過將圖像分成大小相等(一般為8*8)…

matlab驗潮站,驗潮站的作用是什么

驗潮站的作用是什么?驗潮站的建成投入使用&#xff0c;可實時觀測沿海潮汐等觀測要素&#xff0c;為潮汐預報、赤潮的發生、風暴潮預警報、海嘯預警及海平面變化提供基礎數據保障以及預測&#xff0c;同時為科學開發海洋提供有力的支持&#xff0c;為海洋經濟健康發展保駕護航…

答題闖關php,成語答題闖關紅包流量主小程序源碼

修復紅包頁面提現提示文字得疊的問題限制過關紅包每天領取個數左側影響美觀的小程序鏈接的文字去掉了增加版本號沒有問題的可以暫不更新此版本修復前一版本客服提現沒有授權的問題管理后臺增加主動推送客服消息(紅包)給用戶的功能&#xff0c;喚醒用戶使用自定義分享的配置增加…

php是音頻嗎,只要是用PHP和JS發布的HTML5是否可以播放音頻?

我正在嘗試創建一個可以上傳播客的頁面。我想擁有“發布”或“取消發布”的能力。我讓每個播客添加到一個數據庫中,包含它的信息和發布列,可以是真是假。目前我使用以下代碼PHP:if(isPublished()){header(Cache-Control: max-age100000);header(Content-Transfer-Encoding: bin…

php收購,php中文網收購全國用戶量最大的phpstudy集成開發環境揭秘

phpstudy介紹2008年第一個版本誕生&#xff0c;至今已有&#xff19;年,該程序包集成最新的ApachePHPMySQLphpMyAdminZendOptimizer,一次性安裝,無須配置即可使用,是非常方便、好用的PHP調試環境.該程序不僅包括PHP調試環境,還包括了開發工具、開發手冊等.總之學習PHP只需一個包…

復雜電網三相短路計算的matlab仿真,復雜電網三相短路計算的MATLAB仿真電力系統分析課設報告 - 圖文...

XG?XT**35.3100??0.11003000.856100???0.05100120發電廠B&#xff1a;XG?XT**17.65100 ??0.051003000.853100???0.025100120發電廠H&#xff1a;XG?XT**17.65100??0.051003000.8512100???0.1100120變電站C&#xff1a;3.6100*XT???0.03100120 線路&#x…

php 將多個數組 相同的鍵重組,PHP – 合并兩個類似于array_combine但具有重復鍵的數組...

你可以使用array_map&#xff1a;$arrKeys array(str, str, otherStr);$arrVals array(1.22, 1.99, 5.17);function foo($key, $val) {return array($key>$val);}$arrResult array_map(foo, $arrKeys, $arrVals);print_r($arrResult);Array([0] > Array([str] > 1.…

C php反序列化,php反序列化漏洞 - anansec的個人空間 - OSCHINA - 中文開源技術交流社區...

反序列化本身是沒有漏洞的&#xff0c;但是當反序列化和一些魔術方法結合使用時就可能會產生安全風險。常用的魔術方法__wakeup反序列化漏洞示例(__wekeup)class A{var $test "demo";function __wakeup(){eval($this->test);}}$b new A();$c serialize($b);$a …

oracle lob值是什么,關于Oracle數據庫LOB大字段總結

概述在ORACLE數據庫中&#xff0c;DBA_OBJECTS視圖中OBJECT_TYPE為LOB的對象是什么東西呢&#xff1f;其實OBJECT_TYPE為LOB就是大對象(LOB)&#xff0c;它指那些用來存儲大量數據的數據庫字段。Oracle 11gR2 文檔&#xff1a;http://download.oracle.com/docs/cd/E11882_01/Ap…

php 統計目錄大小,PHP 統計目錄大小

例01:function dirsize($dir){$size0;//打開目錄$ddopendir($dir); //--opendir("")打開一個目錄&#xff0c;返回此目錄的資源句柄readdir($dd); //--通過讀兩次&#xff0c;來跳過特殊目錄"."、".."readdir($dd);//遍歷目錄累加大小while($f …