import datetimeimport pandas as pdimport backtrader as bt
from datetime import datetime
import matplotlib
import akshare as ak
%matplotlib inlineclass SmaCross(bt.Strategy):# 全局設定交易策略的參數params = (('pfast', 5), ('pslow', 20),)def __init__(self):sma1 = bt.ind.SMA(period=self.p.pfast) # fast moving averagesma2 = bt.ind.SMA(period=self.p.pslow) # slow moving averageself.crossover = bt.ind.CrossOver(sma1, sma2) # crossover signaldef next(self):if self.crossover > 0: # if fast crosses slow to the upsideself.close()print(self.position)self.buy(size=1500) # enter longprint("Buy {} shares".format( self.data.close[0]))print(self.position)elif self.crossover < 0: # in the market & cross to the downsideself.close()# close long positionprint(self.position)self.sell(size=1500)print("Sale {} shares".format(self.data.close[0]))print(self.position)def bt1():# 利用 AKShare 獲取股票的后復權數據,這里只獲取前 6 列stock_hfq_df = ak.stock_zh_a_hist(symbol="000001", adjust="hfq").iloc[:, :6]# 處理字段命名,以符合 Backtrader 的要求stock_hfq_df.columns = ['date','open','close','high','low','volume',]# 把 date 作為日期索引,以符合 Backtrader 的要求stock_hfq_df.index = pd.to_datetime(stock_hfq_df['date'])start_date = datetime(1991, 4, 3) # 回測開始時間end_date = datetime(2022, 6, 16) # 回測結束時間data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date) # 加載數據# 初始化cerebro回測系統設置cerebro = bt.Cerebro()# 將數據傳入回測系統cerebro.adddata(data)# 將交易策略加載到回測系統中cerebro.addstrategy(SmaCross)# 設置初始資本為10,000startcash = 10000cerebro.broker.setcash(startcash)# 設置交易手續費為 0.1%cerebro.broker.setcommission(commission=0.001)# 運行回測系統cerebro.run()# 獲取回測結束后的總資金portvalue = cerebro.broker.getvalue()pnl = portvalue - startcashprint(f'凈收益: {round(pnl,2)}')# 打印結果print(f'總資金: {round(portvalue,2)}')cerebro.plot(style='candlestick')if __name__ == '__main__':bt1()