前言
較長一段時間以來我都發現不少開發者對 jdk 中的 J.U.C
(java.util.concurrent)也就是 Java 并發包的使用甚少,更別談對它的理解了;但這卻也是我們進階的必備關卡。
之前或多或少也分享過相關內容,但都不成體系;于是便想整理一套與并發包相關的系列文章。
其中的內容主要包含以下幾個部分:
- 根據定義自己實現一個并發工具。
- JDK 的標準實現。
- 實踐案例。
基于這三點我相信大家對這部分內容不至于一問三不知。
既然開了一個新坑,就不想做的太差;所以我打算將這個列表下的大部分類都講到。
所以本次重點討論 ArrayBlockingQueue
。
自己實現
在自己實現之前先搞清楚阻塞隊列的幾個特點:
- 基本隊列特性:先進先出。
- 寫入隊列空間不可用時會阻塞。
- 獲取隊列數據時當隊列為空時將阻塞。
實現隊列的方式多種,總的來說就是數組和鏈表;其實我們只需要搞清楚其中一個即可,不同的特性主要表現為數組和鏈表的區別。
這里的 ArrayBlockingQueue
看名字很明顯是由數組實現。
我們先根據它這三個特性嘗試自己實現試試。
初始化隊列
我這里自定義了一個類:ArrayQueue
,它的構造函數如下:
public ArrayQueue(int size) {items = new Object[size];}
很明顯這里的 items
就是存放數據的數組;在初始化時需要根據大小創建數組。
寫入隊列
寫入隊列比較簡單,只需要依次把數據存放到這個數組中即可,如下圖:
但還是有幾個需要注意的點:
- 隊列滿的時候,寫入的線程需要被阻塞。
- 寫入過隊列的數量大于隊列大小時需要從第一個下標開始寫。
先看第一個隊列滿的時候,寫入的線程需要被阻塞
,先來考慮下如何才能使一個線程被阻塞,看起來的表象線程卡住啥事也做不了。
有幾種方案可以實現這個效果:
Thread.sleep(timeout)
線程休眠。object.wait()
讓線程進入waiting
狀態。
當然還有一些
join、LockSupport.part
等不在本次的討論范圍。
阻塞隊列還有一個非常重要的特性是:當隊列空間可用時(取出隊列),寫入線程需要被喚醒讓數據可以寫入進去。
所以很明顯Thread.sleep(timeout)
不合適,它在到達超時時間之后便會繼續運行;達不到空間可用時才喚醒繼續運行這個特點。
其實這樣的一個特點很容易讓我們想到 Java 的等待通知機制來實現線程間通信;更多線程見通信的方案可以參考這里:深入理解線程通信
所以我這里的做法是,一旦隊列滿時就將寫入線程調用 object.wait()
進入 waiting
狀態,直到空間可用時再進行喚醒。
/*** 隊列滿時的阻塞鎖*/private Object full = new Object();/*** 隊列空時的阻塞鎖*/private Object empty = new Object();
所以這里聲明了兩個對象用于隊列滿、空情況下的互相通知作用。
在寫入數據成功后需要使用 empty.notify()
,這樣的目的是當獲取隊列為空時,一旦寫入數據成功就可以把消費隊列的線程喚醒。
這里的 wait 和 notify 操作都需要對各自的對象使用
synchronized
方法塊,這是因為 wait 和 notify 都需要獲取到各自的鎖。
消費隊列
上文也提到了:當隊列為空時,獲取隊列的線程需要被阻塞,直到隊列中有數據時才被喚醒。
代碼和寫入的非常類似,也很好理解;只是這里的等待、喚醒恰好是相反的,通過下面這張圖可以很好理解:
總的來說就是:
- 寫入隊列滿時會阻塞直到獲取線程消費了隊列數據后喚醒寫入線程。
- 消費隊列空時會阻塞直到寫入線程寫入了隊列數據后喚醒消費線程。
測試
先來一個基本的測試:單線程的寫入和消費。
3
123
1234
12345
通過結果來看沒什么問題。
當寫入的數據超過隊列的大小時,就只能消費之后才能接著寫入。
2019-04-09 16:24:41.040 [Thread-0] INFO c.c.concurrent.ArrayQueueTest - [Thread-0]123
2019-04-09 16:24:41.040 [main] INFO c.c.concurrent.ArrayQueueTest - size=3
2019-04-09 16:24:41.047 [main] INFO c.c.concurrent.ArrayQueueTest - 1234
2019-04-09 16:24:41.048 [main] INFO c.c.concurrent.ArrayQueueTest - 12345
2019-04-09 16:24:41.048 [main] INFO c.c.concurrent.ArrayQueueTest - 123456
從運行結果也能看出只有當消費數據后才能接著往隊列里寫入數據。
而當沒有消費時,再往隊列里寫數據則會導致寫入線程被阻塞。
并發測試
三個線程并發寫入300條數據,其中一個線程消費一條。
=====0
299
最終的隊列大小為 299,可見線程也是安全的。
由于不管是寫入還是獲取方法里的操作都需要獲取鎖才能操作,所以整個隊列是線程安全的。
ArrayBlockingQueue
下面來看看 JDK 標準的 ArrayBlockingQueue
的實現,有了上面的基礎會更好理解。
初始化隊列
看似要復雜些,但其實逐步拆分后也很好理解:
第一步其實和我們自己寫的一樣,初始化一個隊列大小的數組。
第二步初始化了一個重入鎖,這里其實就和我們之前使用的 synchronized
作用一致的;
只是這里在初始化重入鎖的時候默認是非公平鎖
,當然也可以指定為 true
使用公平鎖;這樣就會按照隊列的順序進行寫入和消費。
更多關于
ReentrantLock
的使用和原理請參考這里:ReentrantLock 實現原理
三四兩步則是創建了 notEmpty notFull
這兩個條件,他的作用于用法和之前使用的 object.wait/notify
類似。
這就是整個初始化的內容,其實和我們自己實現的非常類似。
寫入隊列
其實會發現阻塞寫入的原理都是差不多的,只是這里使用的是 Lock 來顯式獲取和釋放鎖。
同時其中的 notFull.await();notEmpty.signal();
和我們之前使用的 object.wait/notify
的用法和作用也是一樣的。
當然它還是實現了超時阻塞的 API
。
也是比較簡單,使用了一個具有超時時間的等待方法。
消費隊列
再看消費隊列:
也是差不多的,一看就懂。
而其中的超時 API 也是使用了 notEmpty.awaitNanos(nanos)
來實現超時返回的,就不具體說了。
實際案例
說了這么多,來看一個隊列的實際案例吧。
背景是這樣的:
有一個定時任務會按照一定的間隔時間從數據庫中讀取一批數據,需要對這些數據做校驗同時調用一個遠程接口。
簡單的做法就是由這個定時任務的線程去完成讀取數據、消息校驗、調用接口等整個全流程;但這樣會有一個問題:
假設調用外部接口出現了異常、網絡不穩導致耗時增加就會造成整個任務的效率降低,因為他都是串行會互相影響。
所以我們改進了方案:
其實就是一個典型的生產者消費者模型:
- 生產線程從數據庫中讀取消息丟到隊列里。
- 消費線程從隊列里獲取數據做業務邏輯。
這樣兩個線程就可以通過這個隊列來進行解耦,互相不影響,同時這個隊列也能起到緩沖的作用。
但在使用過程中也有一些小細節值得注意。
因為這個外部接口是支持批量執行的,所以在消費線程取出數據后會在內存中做一個累加,一旦達到閾值或者是累計了一個時間段便將這批累計的數據處理掉。
但由于開發者的大意,在消費的時候使用的是 queue.take()
這個阻塞的 API;正常運行沒啥問題。
可一旦原始的數據源,也就是 DB 中沒數據了,導致隊列里的數據也被消費完后這個消費線程便會被阻塞。
這樣上一輪積累在內存中的數據便一直沒機會使用,直到數據源又有數據了,一旦中間間隔較長時便可能會導致嚴重的業務異常。
所以我們最好是使用 queue.poll(timeout)
這樣帶超時時間的 api,除非業務上有明確的要求需要阻塞。
這個習慣同樣適用于其他場景,比如調用 http、rpc 接口等都需要設置合理的超時時間。
總結
關于 ArrayBlockingQueue
的相關分享便到此結束,接著會繼續更新其他并發容器及并發工具。
對本文有任何相關問題都可以留言討論。
本文涉及到的所有源碼:
https://github.com/crossoverJie/JCSprout/blob/master/src/main/java/com/crossoverjie/concurrent/ArrayQueue.java
你的點贊與分享是對我最大的支持