牛客網 算法入門篇 左程云老師 個人復習,如果侵全,設為私密
二叉樹遍歷(遞歸)
-
先序遍歷(中,左,右)
-
中序遍歷(左,中,右)
-
后序遍歷(左,右,中)
- 如上圖所示結構,二叉樹的遍歷本質上都是遞歸序,1、2和3節點每個都會出現三次,比如從節點1出發,來到節點2,節點2的左邊為空,返回,打印2,右邊為空,返回打印2,再返回到節點1,節點3類似。所以最后輸出的序列為1,2,2,2,1,3,3,3,1。
- 如果打印遞歸序出現的第1次的元素,就是先序遍歷
- 如果打印遞歸序出現的第2次的元素,就是中序遍歷
- 如果打印遞歸序出現的第3次的元素,就是后序遍歷
二叉樹遍歷(非遞歸)
先序遍歷
- 二叉樹的結構如圖所示,準備一個棧用于接收數據
- 原則只有兩點:1,棧中彈出節點叫做cur(當前節點),彈出就打印;2,先打印cur的右節點,仔打印左節點,沒有就無需操作。棧空就停止。
- 1進棧,彈出1,打印1;將3和2壓入棧中,彈出2,打印2,將2的孩子節點4和5押入棧中;因為先押入右,再壓左,因此先將5押入,再押入4;彈出4,打印4;如上所述,先序遍歷為1,2,4,5,3,6,7
代碼
package class05;import java.util.Stack;public class Code01_PreInPosTraversal {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static void f(Node head) {// 1if (head == null) {return;}// 1f(head.left); //2//2f(head.right);// 3// 3}public static void preOrderRecur(Node head) {if (head == null) {return;}System.out.print(head.value + " ");preOrderRecur(head.left); preOrderRecur(head.right);}public static void inOrderRecur(Node head) {if (head == null) {return;}inOrderRecur(head.left);System.out.print(head.value + " ");inOrderRecur(head.right);}public static void posOrderRecur(Node head) {if (head == null) {return;}posOrderRecur(head.left);posOrderRecur(head.right);System.out.print(head.value + " ");}public static void preOrderUnRecur(Node head) {System.out.print("pre-order: ");if (head != null) {Stack<Node> stack = new Stack<Node>();stack.add(head);while (!stack.isEmpty()) {head = stack.pop();System.out.print(head.value + " ");if (head.right != null) {stack.push(head.right);}if (head.left != null) {stack.push(head.left);}}}System.out.println();}public static void inOrderUnRecur(Node head) {System.out.print("in-order: ");if (head != null) {Stack<Node> stack = new Stack<Node>();while (!stack.isEmpty() || head != null) {if (head != null) {stack.push(head);head = head.left;} else {head = stack.pop();System.out.print(head.value + " ");head = head.right;}}}System.out.println();}public static void posOrderUnRecur1(Node head) {System.out.print("pos-order: ");if (head != null) {Stack<Node> s1 = new Stack<Node>();Stack<Node> s2 = new Stack<Node>();s1.push(head);while (!s1.isEmpty()) {head = s1.pop();s2.push(head);if (head.left != null) {s1.push(head.left);}if (head.right != null) {s1.push(head.right);}}while (!s2.isEmpty()) {System.out.print(s2.pop().value + " ");}}System.out.println();}public static void posOrderUnRecur2(Node h) {System.out.print("pos-order: ");if (h != null) {Stack<Node> stack = new Stack<Node>();stack.push(h);Node c = null;while (!stack.isEmpty()) {c = stack.peek();if (c.left != null && h != c.left && h != c.right) {stack.push(c.left);} else if (c.right != null && h != c.right) {stack.push(c.right);} else {System.out.print(stack.pop().value + " ");h = c;}}}System.out.println();}public static void main(String[] args) {Node head = new Node(5);head.left = new Node(3);head.right = new Node(8);head.left.left = new Node(2);head.left.right = new Node(4);head.left.left.left = new Node(1);head.right.left = new Node(7);head.right.left.left = new Node(6);head.right.right = new Node(10);head.right.right.left = new Node(9);head.right.right.right = new Node(11);// recursiveSystem.out.println("==============recursive==============");System.out.print("pre-order: ");preOrderRecur(head);System.out.println();System.out.print("in-order: ");inOrderRecur(head);System.out.println();System.out.print("pos-order: ");posOrderRecur(head);System.out.println();// unrecursiveSystem.out.println("============unrecursive=============");preOrderUnRecur(head);inOrderUnRecur(head);posOrderUnRecur1(head);posOrderUnRecur2(head);}}
中序遍歷(非遞歸)
- 原則只有兩點:1,棧中彈出節點叫做cur(當前節點),彈出就打印;2,先打印cur的左節點,仔打印右節點,沒有就無需操作。棧空就停止。
- 不斷將右節點分成左和中節點
后序遍歷(非遞歸)
- 原則只有兩點:1,棧中彈出節點叫做cur(當前節點),彈出不打印,放到一個新的棧中;2,最后將第二個棧中的元素打印,相當于是(左,右,中),即后序遍歷
直觀打印二叉樹
package class05;public class Code02_PrintBinaryTree {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static void printTree(Node head) {System.out.println("Binary Tree:");printInOrder(head, 0, "H", 17);System.out.println();}public static void printInOrder(Node head, int height, String to, int len) {if (head == null) {return;}printInOrder(head.right, height + 1, "v", len);String val = to + head.value + to;int lenM = val.length();int lenL = (len - lenM) / 2;int lenR = len - lenM - lenL;val = getSpace(lenL) + val + getSpace(lenR);System.out.println(getSpace(height * len) + val);printInOrder(head.left, height + 1, "^", len);}public static String getSpace(int num) {String space = " ";StringBuffer buf = new StringBuffer("");for (int i = 0; i < num; i++) {buf.append(space);}return buf.toString();}public static void main(String[] args) {Node head = new Node(1);head.left = new Node(-222222222);head.right = new Node(3);head.left.left = new Node(Integer.MIN_VALUE);head.right.left = new Node(55555555);head.right.right = new Node(66);head.left.left.right = new Node(777);printTree(head);head = new Node(1);head.left = new Node(2);head.right = new Node(3);head.left.left = new Node(4);head.right.left = new Node(5);head.right.right = new Node(6);head.left.left.right = new Node(7);printTree(head);head = new Node(1);head.left = new Node(1);head.right = new Node(1);head.left.left = new Node(1);head.right.left = new Node(1);head.right.right = new Node(1);head.left.left.right = new Node(1);printTree(head);}}
求二叉樹的最大寬度
使用隊列
- 使用一個隊列,從頭部進入,從尾巴出來;
- 原則:彈出當前節點cur,彈出并打印;當前節點的話存在左右節點的話,先放入左節點,再放入右節點。如果不存在孩子節點,等隊列為null的話,就停止輸出。但是,存在一個問題,我們不知道哪些節點是類屬于一層的,因此需要進行指定。需要引入哈希表來統計相關的層數、以及最大的跨度
使用哈希表
- 引入哈希表,設置三個變量,max為全局最大寬度,w為統計當前層級的寬度值,level記錄統計層級
- 初始設置max=-1,w=0,level=1;當a輸入隊列,w變為1,level顯示當前層級為1,當a出隊列,將其孩子節點b和c放入隊列,當b出隊列,level查詢發現b是2層的,因此將w和max比較大小,將大的數值賦值給max,然后將w清除數據,重新統計第二層級的數的個數。以此類推。
代碼
package class05;import java.util.HashMap;
import java.util.LinkedList;
import java.util.Queue;public class Code03_TreeMaxWidth {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static int w(Node head) {if(head == null) {return 0;}Queue<Node> queue = new LinkedList<>();queue.add(head);HashMap<Node, Integer> levelMap = new HashMap<>();levelMap.put(head, 1);int curLevel = 1;int curLevelNodes = 0;int max = Integer.MIN_VALUE;while(!queue.isEmpty()) {Node cur = queue.poll();int curNodeLevel = levelMap.get(cur);if(curNodeLevel == curLevel) {curLevelNodes++;} else {max = Math.max(max, curLevelNodes);curLevel++;curLevelNodes = 1;}if(cur.left !=null) {levelMap.put(cur.left, curNodeLevel+1);queue.add(cur.left);}if(cur.right !=null) {levelMap.put(cur.right, curNodeLevel+1);queue.add(cur.right);}}return max;}public static int getMaxWidth(Node head) {if (head == null) {return 0;}int maxWidth = 0;int curWidth = 0;// 目前的層數int curLevel = 0;// node 所在的層數HashMap<Node, Integer> levelMap = new HashMap<>();levelMap.put(head, 1);LinkedList<Node> queue = new LinkedList<>();queue.add(head);Node node = null;Node left = null;Node right = null;while (!queue.isEmpty()) {node = queue.poll();left = node.left;right = node.right;if (left != null) {levelMap.put(left, levelMap.get(node) + 1);queue.add(left);}if (right != null) {levelMap.put(right, levelMap.get(node) + 1);queue.add(right);}if (levelMap.get(node) > curLevel) {curWidth = 1;curLevel = levelMap.get(node);} else {curWidth++;}maxWidth = Math.max(maxWidth, curWidth);//更新最后一層,因為最后一層沒有觸發邏輯}return maxWidth;}public static void main(String[] args) {// TODO Auto-generated method stub}}
?二叉樹的遞歸套路
如何判斷一棵樹是滿二叉樹
- 性質 節點數 = 2^樹的高度 - 1
- 思路 假設以x為頭節點,只有滿足性質才是一個滿二叉樹。在容許向左右兩個孩子要信息的前提下,應該要什么信息,才可以解決問題。
public class IsFull{public static class Node{public int value;public Node left;public Node right;public Node(int data){this.value = data;}}public static boolean isFull(Node head){Info info = processInfo(head);int size = info.size;int height = info.height;return size == (1<<height) - 1;}public static class Info{public int size;public int height;public Info(int s,int h){size = s;height = h;}}public static Info processInfo(Node x){if(x == 0){return new Info(0,0);}Info leftInfo = processInfo(x.left);Info rightInfo = processInfo(x.right);int size = leftInfo.size + rightInfo.size + 1;int height = Math.max(leftInfo.height,rightInfo.height) + 1;return new Info(size, height);}public static void main(String[] args) {}
}
方法歸納
- 假設要求以x為頭的答案
- 向左右兩個孩子要信息,去分析構成答案的主要元素
- 確定向左右孩子要的信息,有可能左右要的信息不一樣
- 組織收集到的信息
判斷以x為頭的二叉樹是否是平衡二叉樹
- 判斷左右孩子的高度差是否相差小于等于1
- 如果左右孩子不滿足平衡二叉樹,那么此平衡二叉樹不成立
代碼
import jdk.vm.ci.code.site.Infopoint;public class IsFull{public static class Node{public int value;public Node left;public Node right;public Node(int data){this.value = data;}}public static class Info{public boolean isBalanced;public int height;public Info(boolean is,int h){isBalanced = is;height = h;}}public static Info process(Node x){if(x == nll){return new Info(true,0);//return null;}Info leftInfo = process(x.left);Info rightInfo = process(x.right);int subTreeMaxHeight = 0;if(leftInfo != null){subTreeMaxHeight = leftInfo.height;}if(rightInfo!=null){subTreeMaxHeight = Math.max(subTreeMaxHeight,rightInfo.height);}int height = 1 + subTreeMaxHeight;boolean isBalanced = true;if(leftInfo!=null && !leftInfo.isBalanced){isBalanced=false;}if(rightInfo!= null && !rightInfo.isBalanced){isBalanced = false;}int leftH = leftInfo != null ? leftInfo.height : 0;int rightH = leftInfo != null ? rightInfo.height : 0; if(Math.abs(leftH - rightH)>1){isBalanced = false;}return new Infopoint(isBalanced, height);}public static void main(String[] args) {}
}
求樹中兩個節點的最大距離
情況分類
和頭節點x無關
- 左樹上的最大距離
- 右樹上的最大距離
和頭節點x相關
-
左邊距離x最遠和x到右邊最遠距離(樹的高度)
代碼
import org.graalvm.compiler.nodes.calc.LeftShiftNode;
import org.graalvm.compiler.nodes.calc.RightShiftNode;import jdk.vm.ci.code.site.Infopoint;public class IsFull{public static int maxDistance(Node head){Info info = process(head);return info.maxDistance;}public static class Info{public int maxDistance;public int height;public Info(boolean is,int h){maxDistance = d;height = h;}}public static Info process(Node x){if(x == null){return new Info(0,0);}Info leftInfo = process(x.left);Info rightInfo = process(x.right);int height = Math.max(leftInfo.height,rightInfo.height) + 1;int maxDistance = Math.max(leftInfo.height + rightInfo.height + 1,Math.max(leftInfo.height,rightInfo.height));return new Info(maxDistance,height);} public static void main(String[] args) {}
}
判斷一個樹是否是搜索二叉樹
套路
判定條件
- 左樹是否是搜索二叉樹
- 右樹是否是搜索二叉樹
- 左邊最大的是否小于 x節點
- 右邊最小的是否大于 x節點
代碼
package class05;import java.util.LinkedList;
import java.util.Stack;import class05.Code01_PreInPosTraversal.Node;public class Code04_IsBST {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static class ReturnData {public boolean isBST;public int min;public int max;public ReturnData(boolean is, int mi, int ma) {isBST = is;min = mi;max = ma;}}public static ReturnData process(Node x) {if(x == null) {return null;}ReturnData leftData = process(x.left);ReturnData rightData = process(x.right);int min = x.value;int max = x.value;if(leftData!=null) {min = Math.min(min, leftData.min);max = Math.max(max, leftData.max);}if(rightData!=null) {min = Math.min(min, rightData.min);max = Math.max(max, rightData.max);}
// boolean isBST = true;
// if(leftData!=null && (!leftData.isBST || leftData.max >= x.value )) {
// isBST= false;
// }
// if(rightData!=null && ( !rightData.isBST || x.value >= rightData.min )) {
// isBST= false;
// }boolean isBST = false;if((leftData != null ? (leftData.isBST && leftData.max < x.value) : true)&&(rightData !=null ? (rightData.isBST && rightData.min > x.value) : true) ) {isBST = true;}return new ReturnData(isBST, min, max);}public static boolean isF(Node head) {if(head == null) {return true;}Info data = f(head);return data.nodes == (1 << data.height - 1);}public static class Info{public int height;public int nodes;public Info(int h, int n) {height = h;nodes = n;}}public static Info f(Node x) {if(x == null) {return new Info(0,0);}Info leftData = f(x.left);Info rightData = f(x.right);int height = Math.max(leftData.height,rightData.height)+1;int nodes = leftData.nodes + rightData.nodes + 1;return new Info(height, nodes);}public static boolean inOrderUnRecur(Node head) {if (head == null) {return true;}int pre = Integer.MIN_VALUE;Stack<Node> stack = new Stack<Node>();while (!stack.isEmpty() || head != null) {if (head != null) {stack.push(head);head = head.left;} else {head = stack.pop();if (head.value <= pre) {return false;}pre = head.value;head = head.right;}}return true;}public static boolean isBST(Node head) {if (head == null) {return true;}LinkedList<Node> inOrderList = new LinkedList<>();process(head, inOrderList);int pre = Integer.MIN_VALUE;for (Node cur : inOrderList) {if (pre >= cur.value) {return false;}pre = cur.value;}return true;}public static void process(Node node, LinkedList<Node> inOrderList) {if (node == null) {return;}process(node.left, inOrderList);inOrderList.add(node);process(node.right, inOrderList);}}
也可以中序遍歷
-
只要遞增,就是搜索二叉樹
-
基于非遞歸中序遍歷改進,由先前的打印,變為和前一個節點比較
代碼
public static boolean inOrderUnRecur(Node head){if(head == null){return true;}int pre = Integer.MIN_VALUE;Stack<Node> stack = new Stack<Node>();while(!stack.isEmpty() || head != null){if(head != null){stack.push(head);head = head.left;}else{head = stack.pop();if(head.value <= pre){return false;}pre = head.value;head = head.right;}}return true;}
不可以使用套路來做
判斷一棵樹是否是完全二叉樹
-
如果使用條件,左子樹是否是完全二叉樹,右子樹是否是完全二叉樹來判定根節點是否是完全二叉樹
- 即使左子樹和右子樹都是完全二叉樹,但是左子樹比右子樹少整整一層的情形下,判定失敗
思路
- 寬度優先遍歷,任何一個節點不能有右節點,沒有左節點。
- 當第一次發現某節點左右不雙全,后續節點都是右節點
package class05;import java.util.LinkedList;public class Code05_IsCBT {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static boolean isCBT(Node head) {if (head == null) {return true;}LinkedList<Node> queue = new LinkedList<>();// 是否遇到過左右兩個孩子不雙全的節點boolean leaf = false;Node l = null;Node r = null;queue.add(head);while (!queue.isEmpty()) {head = queue.poll();l = head.left;r = head.right;if (// 如果遇到了不雙全的節點之后,又發現當前節點不是葉節點(leaf && !(l == null && r == null)) || (l == null && r != null)) {return false;}if (l != null) {queue.add(l);}if (r != null) {queue.add(r);}if (l == null || r == null) {leaf = true;}}return true;}}
求n1和n2的最低公共主先
劃分情況(x為頭節點)
- x無n1和n2
- x只有n1
- x只有n2
- x有n1和n2:左n1n2;右n1n2;左n1右n2;左n2右n1
代碼
package class05;import java.util.HashMap;
import java.util.HashSet;public class Code07_LowestCommonAncestor {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static Node lowestAncestor(Node head, Node o1, Node o2) {if (head == null || head == o1 || head == o2) { // base casereturn head;}Node left = lowestAncestor(head.left, o1, o2);Node right = lowestAncestor(head.right, o1, o2);if (left != null && right != null) {return head;}// 左右兩棵樹,并不都有返回值return left != null ? left : right;}public static class Record1 {private HashMap<Node, Node> map;public Record1(Node head) {map = new HashMap<Node, Node>();if (head != null) {map.put(head, null);}setMap(head);}private void setMap(Node head) {if (head == null) {return;}if (head.left != null) {map.put(head.left, head);}if (head.right != null) {map.put(head.right, head);}setMap(head.left);setMap(head.right);}public Node query(Node o1, Node o2) {HashSet<Node> path = new HashSet<Node>();while (map.containsKey(o1)) {path.add(o1);o1 = map.get(o1);}while (!path.contains(o2)) {o2 = map.get(o2);}return o2;}}public static class Record2 {private HashMap<Node, HashMap<Node, Node>> map;public Record2(Node head) {map = new HashMap<Node, HashMap<Node, Node>>();initMap(head);setMap(head);}private void initMap(Node head) {if (head == null) {return;}map.put(head, new HashMap<Node, Node>());initMap(head.left);initMap(head.right);}private void setMap(Node head) {if (head == null) {return;}headRecord(head.left, head);headRecord(head.right, head);subRecord(head);setMap(head.left);setMap(head.right);}private void headRecord(Node n, Node h) {if (n == null) {return;}map.get(n).put(h, h);headRecord(n.left, h);headRecord(n.right, h);}private void subRecord(Node head) {if (head == null) {return;}preLeft(head.left, head.right, head);subRecord(head.left);subRecord(head.right);}private void preLeft(Node l, Node r, Node h) {if (l == null) {return;}preRight(l, r, h);preLeft(l.left, r, h);preLeft(l.right, r, h);}private void preRight(Node l, Node r, Node h) {if (r == null) {return;}map.get(l).put(r, h);preRight(l, r.left, h);preRight(l, r.right, h);}public Node query(Node o1, Node o2) {if (o1 == o2) {return o1;}if (map.containsKey(o1)) {return map.get(o1).get(o2);}if (map.containsKey(o2)) {return map.get(o2).get(o1);}return null;}}// for test -- print treepublic static void printTree(Node head) {System.out.println("Binary Tree:");printInOrder(head, 0, "H", 17);System.out.println();}public static void printInOrder(Node head, int height, String to, int len) {if (head == null) {return;}printInOrder(head.right, height + 1, "v", len);String val = to + head.value + to;int lenM = val.length();int lenL = (len - lenM) / 2;int lenR = len - lenM - lenL;val = getSpace(lenL) + val + getSpace(lenR);System.out.println(getSpace(height * len) + val);printInOrder(head.left, height + 1, "^", len);}public static String getSpace(int num) {String space = " ";StringBuffer buf = new StringBuffer("");for (int i = 0; i < num; i++) {buf.append(space);}return buf.toString();}public static void main(String[] args) {Node head = new Node(1);head.left = new Node(2);head.right = new Node(3);head.left.left = new Node(4);head.left.right = new Node(5);head.right.left = new Node(6);head.right.right = new Node(7);head.right.right.left = new Node(8);printTree(head);System.out.println("===============");Node o1 = head.left.right;Node o2 = head.right.left;System.out.println("o1 : " + o1.value);System.out.println("o2 : " + o2.value);System.out.println("ancestor : " + lowestAncestor(head, o1, o2).value);System.out.println("===============");}}
?