近日,麥肯錫公司發布了《2023科技趨勢展望報告》。報告列出了15個趨勢,并把他們分為5大類,人工智能革命、構建數字未來、計算和連接的前沿、尖端工程技術和可持續發展。
類別一:人工智能革命
生成式AI
生成型人工智能標志著人工智能的一個轉折點。
OpenAI、谷歌、微軟、Meta等都在大力投資大型語言模型技術LLM的研發,推動模型的不斷創新和改進。與以往的人工智能不同,生成式AI的核心技術——基礎模型,可以適應各種任務。在商業環境中,生成式AI不僅可以開啟新的任務,還可以加快、擴展或改進現有的形態。生成式AI有可能通過促進新產品和收入流的開發,提升客戶體驗,從而重新定義企業和價值鏈。然而,其影響最有望體現在提高員工生產力和體驗方面。
?
應用型人工智能
通過機器學習、計算機視覺和自然語言處理等人工智能技術,各行各業的企業可以利用數據并得出洞見,實現自動化流程、增強能力,并做出更明智的決策。
工業化機器學習
工業化機器學習,通常稱為機器學習運營,或者簡稱為MLOps,指的是在企業中擴展和維持機器學習應用所需的工程實踐。這些實踐得到了快速發展的技術工具生態系統的支持,這些工具在功能和互操作性方面都得到了顯著改進。MLOps工具可以幫助企業從試點項目轉向可行的商業產品,加速分析解決方案的擴大,發現和解決生產中的問題,并提高團隊的生產力。
類別二:構建數字未來
下一代軟件開發
下一代技術正在改變軟件開發生命周期(SDLC)的每個階段工程師的能力,從規劃和測試到部署和維護,還能使非技術員工創建應用程序。這些技術可以幫助簡化復雜的任務,并將其他任務簡化為單一命令。這些技術包括AI輔助編程工具、低代碼和無代碼平臺、基礎設施即代碼、自動集成、部署和測試,以及新興的生成型AI工具。
龍測AI-TestOps云平臺以大模型+小模型的混合AI技術為底座,以傳統算法為支撐,構建業務和技術的雙輪驅動,在保障數據安全與隱私的前提下,讓自動化測試更便捷。龍測AI-TestOps云平臺,無代碼、AI輔助測試,自動執行等功能深度貼合下一代軟件開發的發展趨勢。
由于技術挑戰、需要對開發人員和測試工程師進行大規模的再培訓以及其他組織障礙,應用可能會比較緩慢。到2026年,Gartner預測80%的低代碼和無代碼工具用戶將來自傳統IT組織之外。AI啟用的工具還可以通過自動化例行任務和提供問題解決方案來提高傳統開發者的生產力。
研究顯示,開發者在代碼生成方面節省了35%至45%的時間,在代碼重構方面節省了20%至30%的時間。他們還報告在使用AI啟用的工具時感到更快樂、更投入,并獲得更多滿足感,這表明采用這些工具有助于公司在競爭激烈的人才市場中留住人才。
信任架構和數字身份
數字信任技術使組織能夠管理技術和數據風險,加速創新并保護資產。而在數據和技術治理中建立信任可以提高組織績效并改善客戶關系。底層技術包括零信任架構(ZTA)、數字身份系統和隱私工程。其他技術通過將解釋性、透明性、安全性和偏見最小化原則融入AI設計中來建立信任。
Web 3.0
Web 3.0 超越了對加密貨幣投資的典型理解,更重要的是它指的是未來互聯網的一種模式,它將權力分散化并重新分配給用戶,潛在地賦予他們更多對個人數據如何獲得經濟價值以及數字資產的更強所有權。
?
類別三:計算和連接的前沿
先進連接技術
先進的連接性改進將提高全球消費者的用戶體驗,并增加移動性、醫療保健和制造業等行業的生產力。公司們正在迅速采用建立在現有部署和連接標準之上的先進連接性技術,但一些新技術,如低地球軌道(LEO)連接和5G網絡,在推廣過程中面臨著些許障礙。
全息現實技術
全息現實技術利用空間計算來解釋物理空間,模擬將數據、物體和人物添加到真實世界環境中,并通過增強現實(AR)、虛擬現實(VR)和混合現實(MR)實現在虛擬世界中的交互。
云以及邊緣計算
在未來,企業將利用多個位置點的計算和存儲基礎設施,從本地到更靠近本地(邊緣),從小型區域數據中心到遠程超大規模數據中心。邊緣計算為組織提供了處理數據更接近其源頭的靈活性,實現更快的數據處理速度(超低延遲)并與云相比實現數據主權和增強數據隱私。減少到終端用戶的距離將縮短數據傳輸延遲和成本,并提供更快速訪問更相關的數據集,有助于企業遵守數據居住法規。
量子技術
量子技術利用量子力學的獨特性質,比經典計算機更高效地執行特定類型的復雜計算,提供安全通信網絡,并提供新一代傳感器,其靈敏度比傳統傳感器有了顯著的提升。原則上,量子技術可以進行模擬和解決更復雜的問題,這將在航空航天、國防、汽車、化工、金融和制藥等各個行業帶來重大突破。
??
類別四:尖端工程技術
未來出行
在汽車大規模生產開始一個多世紀后,出行正在經歷第二個重要的轉折點:向自動駕駛、連接性、車輛電氣化和共享出行技術的轉變,甚至先進空中移動技術,如垂直起降電動飛行器(eVTOL)也在快速推進。
?
未來生物工程
生物學的突破性發展,結合數字技術的創新,有望幫助組織應對醫療保健、食品農業、消費品、可持續發展以及能源和材料生產等領域的需求,創造新的產品和服務。
太空技術
過去五到十年,太空產業最重要的發展是技術成本的降低,這使得新的能力和應用更加易于獲取。組件成本的降低主要得益于衛星和運載火箭的體積、重量、功率和成本的減少。這些降低導致了系統架構的變化,例如從單個大型地球同步軌道(GEO)衛星轉向較小的分布式低地球軌道(LEO)衛星,以及傳統非太空企業對太空技術越來越感興趣。
類別五:可持續發展
電氣化和可再生能源
未來,能源結構將迅速向電力、合成燃料和氫轉變,到2035年將占全球能源結構的32%,到2050年將占50%。
?
其他氣候相關的技術
其他氣候技術包括碳捕獲利用與封存(CCUS),碳減排,自然氣候解決方案,循環技術,替代蛋白和農業,水資源和生物多樣性解決方案與適應措施,以及追蹤凈零排放進展的技術。