摘自:
前幾日讀書會,談到linux中driver和device的匹配問題,我認為是通過設備名來匹配的,因為我之前看過platform的驅動,它就是通過設備name和驅動name來進行匹配,所以我確信linux里邊所有的驅動和設備都是這樣匹配的。但師兄A提出了反對意見,并舉pci設備和pci驅動的匹配過程為例。我深信自己的理解是正確的,下來以后分秒必爭的查看了內核源代碼,結果發現:我們的理解都是正確的,但又都是不正確的!
先以pci設備和pci驅動的匹配過程為例:
static struct pci_driver serial_pci_driver = {
.name?????????? = "serial",
.probe????????? = pciserial_init_one,
.remove???????? = __devexit_p(pciserial_remove_one),
#ifdef CONFIG_PM
.suspend??????? = pciserial_suspend_one,
.resume???????? = pciserial_resume_one,
#endif
.id_table?????? = serial_pci_tbl,
};
static int __init serial8250_pci_init(void)
{
return pci_register_driver(&serial_pci_driver);
}
分析:
#define pci_register_driver(driver)???????????? \
__pci_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
int __pci_register_driver(struct pci_driver *drv, struct module *owner,
const char *mod_name)
{
...
drv->driver.bus = &pci_bus_type;
error = driver_register(&drv->driver);
...
}
僅僅抓取兩句關鍵代碼,后面會用到
driver_register ->? bus_add_driver ->? driver_attach(&driver->driver);
int driver_attach(struct device_driver *drv)
{
return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
//遍歷總線上的所有設備,每遍歷一個設備,就調用一次__driver_attach來和驅動進行匹配
}
static int __driver_attach(struct device *dev, void *data)
{
struct device_driver *drv = data;
/*
* Lock device and try to bind to it. We drop the error
* here and always return 0, because we need to keep trying
* to bind to devices and some drivers will return an error
* simply if it didn't support the device.
*
* driver_probe_device() will spit a warning if there
* is an error.
*/
if (drv->bus->match && !drv->bus->match(dev, drv))
return 0;
if (dev->parent)??????? /* Needed for USB */
down(&dev->parent->sem);
down(&dev->sem);
if (!dev->driver)
driver_probe_device(drv, dev);
up(&dev->sem);
if (dev->parent)
up(&dev->parent->sem);
return 0;
}
我最關注的是這句代碼:
if (drv->bus->match && !drv->bus->match(dev, drv))
return 0;
這句代碼揭露了匹配的過程。
這是一種面向對像的思想,你是pci設備,那就調用pci總線的match函數;你是其他總線的設備
那就調用相應的其他的match函數。由于我們是pci的驅動(我們注冊驅動使用的函數是pci_register_driver)并且在前面有:
drv->driver.bus = &pci_bus_type;讓我們看看pci_bus_type是和角色:
struct bus_type pci_bus_type = {
.name?????????? = "pci",
.match????????? = pci_bus_match,
.uevent???????? = pci_uevent,
.probe????????? = pci_device_probe,
.remove???????? = pci_device_remove,
.shutdown?????? = pci_device_shutdown,
.dev_attrs????? = pci_dev_attrs,
.pm???????????? = PCI_PM_OPS_PTR,
};
很明顯,我們將進入pci_bus_match
static int pci_bus_match(struct device *dev, struct device_driver *drv)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct pci_driver *pci_drv = to_pci_driver(drv);
const struct pci_device_id *found_id;
found_id = pci_match_device(pci_drv, pci_dev);//對pci驅動和設備進行匹配
if (found_id)
return 1;
return 0;
}
static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
struct pci_dev *dev)
{
struct pci_dynid *dynid;
/* Look at the dynamic ids first, before the static ones */
spin_lock(&drv->dynids.lock);
list_for_each_entry(dynid, &drv->dynids.list, node) {
if (pci_match_one_device(&dynid->id, dev)) {
spin_unlock(&drv->dynids.lock);
return &dynid->id;
}
}
spin_unlock(&drv->dynids.lock);
return pci_match_id(drv->id_table, dev);
}
static inline const struct pci_device_id *
pci_match_one_device(const struct pci_device_id *id, const struct pci_dev *dev)
{
if ((id->vendor == PCI_ANY_ID || id->vendor == dev->vendor) &&
(id->device == PCI_ANY_ID || id->device == dev->device) &&
(id->subvendor == PCI_ANY_ID || id->subvendor == dev->subsystem_vendor) &&
(id->subdevice == PCI_ANY_ID || id->subdevice == dev->subsystem_device) &&
!((id->class ^ dev->class) & id->class_mask))
return id;
return NULL;
}
這就是具體的匹配過程,這個過程大家看代碼應該可以明白。
假如匹配,那么會返回一個pci_device_id類型的指針。
在__driver_attach函數里邊繼續往下看,有一句:
if (!dev->driver)
driver_probe_device(drv, dev);
假如 這個設備還沒有“名花有主”,那么調用driver_probe_device
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
int ret = 0;
if (!device_is_registered(dev))
return -ENODEV;
if (drv->bus->match && !drv->bus->match(dev, drv))
goto done;
pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
drv->bus->name, __func__, dev_name(dev), drv->name);
ret = really_probe(dev, drv);
done:
return ret;
}
static int really_probe(struct device *dev, struct device_driver *drv)
{
...
if (dev->bus->probe) {
ret = dev->bus->probe(dev);
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev);????????? //終于進入了我們注冊的驅動的probe函數
if (ret)
goto probe_failed;
}
...
}
總結一下,pci驅動和pci設備的匹配不是通過名字來進行匹配的,具體過程上面已經說清楚了。而且,通過上面的分析,大家可以看出來
內核使用的是面向對象的思想,不同的總線它的匹配策略是不一樣的。
附:
1.platform總線的匹配策略:
static int platform_match(struct device *dev, struct device_driver *drv)
{
struct platform_device *pdev;
pdev = container_of(dev, struct platform_device, dev);
return (strcmp(pdev->name, drv->name) == 0);
}
可見platform總線設備和驅動的匹配策略很簡單,僅僅是比較name域是否相同
2.usb總線的匹配策略:
static int usb_device_match(struct device *dev, struct device_driver *drv)
{
/* devices and interfaces are handled separately */
if (is_usb_device(dev)) {
/* interface drivers never match devices */
if (!is_usb_device_driver(drv))
return 0;
/* TODO: Add real matching code */
return 1;
} else {
struct usb_interface *intf;
struct usb_driver *usb_drv;
const struct usb_device_id *id;
/* device drivers never match interfaces */
if (is_usb_device_driver(drv))
return 0;
intf = to_usb_interface(dev);
usb_drv = to_usb_driver(drv);
id = usb_match_id(intf, usb_drv->id_table);
if (id)
return 1;
id = usb_match_dynamic_id(intf, usb_drv);
if (id)
return 1;
}
return 0;
}
usb總線設備和驅動的匹配策略則比較復雜。
摘自:
閱讀(2861) | 評論(0) | 轉發(0) |