最大熵對應的概率分布
最大熵定理
設 \(X \sim p(x)\) 是一個連續型隨機變量,其微分熵定義為
\[ h(X) = - \int p(x)\log p(x) dx \]
其中,\(\log\) 一般取自然對數 \(\ln\), 單位為 奈特(nats)。
考慮如下優化問題:
\[ \begin{array}{ll} &\underset{p}{\text{Maximize}} & \displaystyle h(p) = - \int_S p(x)\log p(x) dx \\ &\text{Subject to} &\displaystyle \int_S p(x) dx = 1 \\[2pt] &~ & p(x) \ge 0 \\[2pt] &~ & \displaystyle \int_S p(x) f_i(x) dx = \alpha_i, ~i=1,2,3,\dots,n \end{array} \]
其中,集合 \(S\) 是隨機變量的support,即其所有可能的取值。我們意圖找到這樣的概率分布 \(p\), 他滿足所有的約束(前兩條是概率公理的約束,最后一條叫做矩約束,在模型中有時會假設隨機變量的矩為常數),并且能夠使得熵最大。將上述優化問題寫成標準形式:
\[ \begin{array}{ll} &\underset{p}{\text{Minimize}} & \displaystyle \int_S p(x)\log p(x) dx \\ &\text{Subject to} &-p(x) \le 0 \\[2pt] &~ &\displaystyle \int_S p(x) dx = 1 \\ &~ & \displaystyle \int_S p(x) f_i(x) dx = \alpha_i, ~i=1,2,3,\dots,n \end{array} \]
使用Lagrange乘數法得到其Lagrangian
\[ L(p,\boldsymbol{\lambda}) = \int_S p\log p ~dx - \mu_{-1}p + \mu_0 \left(\int_S p ~dx - 1\right) + \sum_{j=1}^n \lambda_j \left(\int_S pf_j~dx - \alpha_j\right) \]
根據KKT條件對Lagrangian求導令為0,可得最優解。
\[ \begin{gathered} \frac{\partial L}{\partial p} = \ln p + 1 - \mu_{-1} + \mu_0 + \sum_{j=1}^n \lambda_jf_j := 0 \\ \implies p = \exp\left(-1 + \mu_{-1} - \mu_0 - \sum_{j=1}^n \lambda_j f_j \right) =\displaystyle c^* e^{-\sum_{j=1}^n\lambda_j^* f_j(x)} := p^* \end{gathered} \]
其中,我們要選擇 \(c^*, \boldsymbol{\lambda}^*\) 使得 \(p(x)\) 滿足約束。到這里我們知道,在所有滿足約束的概率分布當中,\(p^*\) 是使得熵達到最大的那一個!
例子
高斯分布
-------->
約束:
- \(E(X) = 0 \implies f_1 = x\)
- \(E(X^2) = \sigma^2 \implies f_2 = x^2\)
根據上面的論證,最大熵分布應具有如下形式:
\[ p(x) = ce^{-\lambda_1x - \lambda_2 x^2} \]
再根據 KKT 條件:
- \(\int_{-\infty}^{+\infty} p(x) = 1\)
- \(\int_{-\infty}^{+\infty} x p(x) = 0\)
- \(\int x^2 p(x) = \sigma^2\)
由條件 \((2) \implies p(x)?\) 是偶函數 \(\implies \lambda_1 = 0?\), 原條件變成
- \(\int_{-\infty}^{+\infty} ce^{-\lambda_2x^2} = 1\)
- \(\int x^2 ce^{-\lambda_2x^2} = \sigma^2\)
\(\implies c = \frac{1}{\sqrt{2\pi\sigma^2}}, ~\lambda_2 = \frac{1}{2\sigma^2} \implies p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \sim N(0, ~\sigma^2)\)
指數分布
--------->
約束:
- \(X \ge 0\)
- \(E(X) = \frac{1}{\mu}\)
根據上面的論證,最大熵分布應具有如下形式:
\[ p(x) = ce^{-\lambda_1x} \]
再根據 KKT 條件:
- \(\int_{0}^{+\infty} ce^{-\lambda_1x}= 1\)
- \(\int_0^{+\infty} x ce^{-\lambda_1x} = \frac{1}{\mu}\)
推導如下:
\[ \begin{gathered} \int_{0}^{+\infty} e^{-\lambda_1x} = \frac{1}{c} \implies \lambda_1 = c \\ \int_{0}^{+\infty}x e^{-\lambda_1x} = \frac{1}{c\mu} = \frac{1}{\lambda_1\mu} \implies \lambda_1 = \mu \end{gathered} \]
\(\implies p(x) = \mu e^{-\mu x} \sim Exp(\mu)\)
均勻分布
--------->
約束:
- \(a \le X \le b\)
根據上面的論證,最大熵分布應具有如下形式:
\[ \begin{gathered} p(x) = ce^{- 0x} = c \\ \int_a^b c ~dx = 1 \implies c = \frac{1}{b-a} \end{gathered} \]
\(\implies p(x) = \frac{1}{b-a} \sim Unif(a,~b)\)
幾何分布
--------->
幾何分布計數直到第一次成功前所有的失敗次數。\(P(X=k) = q^kp\)
約束:
- \(X = 0,1,2,\dots\)
- \(E(X) = \frac{1-p}{p}\)
根據上面的論證,最大熵分布應具有如下形式:
\[ P(X=k) = p_k = ce^{-\lambda_1 k} \]
再根據 KKT 條件:
- \(\sum_{k=0}^{\infty} p_k = 1\)
- \(\sum_{k=0}^{\infty} k p_k = \frac{1-p}{p}\)
推導如下:
\[ \begin{gathered} \sum_{k=0}^{\infty} ce^{-\lambda_1 k} = c \sum_{k=0}^{\infty} q^k \quad(\text{where }q = e^{-\lambda_1})\\ = \frac{c}{1-q} \implies c = 1-q \\ \sum_{k=0}^{\infty} k ce^{-\lambda_1 k} = c\sum_{k=1}^{\infty} k (e^{-\lambda_1})^k = c\sum_{k=1}^{\infty}k q^k = cq \sum kq^{k-1} \\ = cq \sum (q^k)' = cq \left(\sum_{k=1}^{\infty}q^k\right)' = cq \left(\frac{q}{1-q}\right)' \\ = cq \cdot \frac{1}{(1-q)^2} = \frac{q}{1-q} = \frac{1-p}{p} \end{gathered} \]
\(\implies e^{-\lambda_1} = q = 1-p, ~ c =p \implies P(X=k) = p_k = pq^k \sim Geom(p)\)