分析工作試用期收獲_免費使用零編碼技能探索數據分析

分析工作試用期收獲

Have you been hearing the new industry buzzword — Data Analytics(it was AI-ML earlier) a lot lately? Does it sound complicated and yet simple enough? Understand the logic behind models but don't know how to code? Apprehensive of spending too much time learning to code before jumping on the bandwagon?

您最近是否經常聽到新的行業流行語-Data Analytics( 早于AI-ML) ? 聽起來復雜但足夠簡單嗎? 了解模型背后的邏輯,但不知道如何編碼? 擔心在投入潮流之前花太多時間學習編碼嗎?

Worry not, there are some awesome tools available for free for non-coders that can help develop complicated models in no time. These tools are completely free for personal use, extremely easy and intuitive and can help one practice without the hassle of learning how to code.

不用擔心,有一些很棒的工具可供非編碼器免費使用,這些工??具可以立即幫助開發復雜的模型。 這些工具完全免費供個人使用,非常簡單直觀,可以幫助一種實踐,而無需學習如何編寫代碼。

I am an amateurish coder but a big machine learning enthusiast. I can code but I avoid it as much as I can (Thank God for that Recording Macro option in Excel), till the point I cannot avoid it.

我是一個業余編碼員,但是非常喜歡機器學習。 我可以編寫代碼,但我會盡量避免(感謝上帝,感謝Excel中的那個Recording Macro選項),直到無法避免為止。

I was working on developing a model for forecasting traffic on a road and had to try a lot of things when I started looking for non-coder resources and found these gems. I am discussing the best three I found. Again, these are open source for individual users but have priced versions for commercial uses.

我當時正在開發一種用于預測道路交通量的模型,當我開始尋找非編碼器資源并發現這些寶石時,不得不嘗試很多事情。 我正在討論我發現的最好的三個。 同樣,這些是面向個人用戶的開源軟件,但是具有商業用途的定價版本。

這些工具不能做什么 (What These Tools Cannot Do)

Please be aware, although these tools remove the need for coding, your understanding of models, basics of data preparation, and statistics should be above the bare minimum. The reason is that when you code, you exactly know what is being done and how, while in most of these tools, default parameters are preloaded, and sometimes the code is not visible to the user. Thus it is easy for model errors to go unnoticed in case the user does not do a thorough QA.

請注意,盡管這些工具消除了對編碼的需求,但是您對模型的理解,數據準備的基礎知識和統計信息應該高于最低要求。 原因是在編寫代碼時,您確切地知道正在執行的操作以及如何執行操作,而在大多數這些工具中,默認參數是預加載的,有時代碼對用戶不可見。 因此,如果用戶沒有進行全面的質量檢查,很容易引起模型錯誤的注意。

In addition to this, these tools will not tell you which data cleaning technique to use, which model to build, or which statistic to compare instead, the tools will let you do all the above tasks easily and give you more time to think and analyze data.

除此之外,這些工具不會告訴您使用哪種數據清除技術,要構建哪種模型或要比較哪種統計量,這些工具將使您輕松地完成上述所有任務,并給您更多的時間進行思考和分析數據。

Now that you have read all the warnings let us directly dive in.

現在您已經閱讀了所有警告,讓我們直接潛入。

1. Knime Analytics (1. Knime Analytics)

This is by far, the best tool in the open source domain.

到目前為止,這是開源領域中最好的工具。

Knime is a very intuitive platform that helps create models using drag and drop nodes in a workflow kind of environment. It is built on python, has widgets for data input, data cleaning, modeling (regression, clustering, classification, Neural Networks, etc), statistics, and majorly used representations.

Knime是一個非常直觀的平臺,可在工作流環境中使用拖放節點幫助創建模型。 它基于python構建,具有用于數據輸入,數據清理,建模(回歸,聚類,分類,神經網絡等),統計信息和主要使用的表示形式的小部件。

It is has a desktop version (I love it) and a Server version for people who want to develop and deploy these model workflows on the web. Installing Knime on your machine is fairly easy, and using it is even more. Below is an example of an NN Model.

它有一個臺式機版本( 我喜歡它 )和一個服務器版本,供希望在網絡上開發和部署這些模型工作流的人們使用。 在您的計算機上安裝Knime非常容易,使用它甚至更多。 以下是NN模型的示例。

There are nodes for every action needed to build a Neural Network. Importing the data, partitioning it, feeding a part to a learner, a predictor (test set), and then a scorer for checking the accuracy of the model. Parameters can be set in nodes that are connected to each other using connectors and can be executed in sequence.

建立神經網絡所需的每個動作都有節點。 導入數據,對其進行分區,將零件饋給學習者,預測變量(測試集),然后饋給評分員以檢查模型的準確性。 可以在使用連接器相互連接的節點中設置參數,并且可以依次執行。

Image for post
Credits — Knime Workspace on my Desktop
積分-我桌面上的Knime工作區

2.橙色 (2. Orange)

Orange is an open source machine learning, data visualization, and analysis tool. Orange also works on widgets arranged in a workflow pattern and has some specialized libraries for specific tasks (time series, bioinformatics, etc).

Orange是開源的機器學習,數據可視化和分析工具。 Orange還可以處理按工作流程模式排列的小部件,并具有一些用于特定任務(時間序列,生物信息學等)的專用庫。

Orange’s UI is more fluid but its node list is less exhaustive than Knime. It has numerous visualization options and can produce decent data analytics. It is built on python and can help create and evaluate models for regression, classification, NN, clustering, time series among other things.

Orange的UI更加流暢,但其節點列表不如Knime詳盡。 它具有多種可視化選項,可以進行體面的數據分析。 它基于python構建,可以幫助創建和評估模型以進行回歸,分類,NN,聚類,時間序列等。

Image for post
Orange Website-Orange網站

3.藍天統計 (3. BlueSky Statistics)

Bluesky is an R based tool that can be used for data modeling and visualizations. It is open source and available for desktops. It has a rich GUI and it can help ease the learning curve for R newbies as for each function the R code is visible.

Bluesky是基于R的工具,可用于數據建模和可視化。 它是開源的,可用于臺式機。 它具有豐富的GUI,它可以幫助R新手簡化學習過程,因為R代碼可見的每個功能。

BlueSky lacks workflow style architecture & node functionality. Instead, it has functions listed under tabs similar to MS Office ribbon tabs. The beauty of BlueSky is that it is built on R which is an incredibly powerful language for statistical data analysis. It has command editor and as the code is completely visible to the user, it is extremely easy for users to modify the code as they like it. It ensures that regular users of R can save a considerable amount of time using this application.

BlueSky缺乏工作流樣式的體系結構和節點功能。 相反,它具有類似于MS Office功能區選項卡的選項卡下列出的功能。 BlueSky的優點在于它基于R,R是一種用于統計數據分析的功能強大的語言。 它具有命令編輯器,并且由于代碼對用戶完全可見,因此用戶可以輕松地隨意修改代碼。 它確保R的普通用戶可以使用此應用程序節省大量時間。

Image for post
Credits — BlueSky Stats User Manual
積分-BlueSky Stats用戶手冊

There are numerous data analytics tools available in the market but most of them are not open source. This makes it difficult for individual users who are still in the exploratory phases of data science.

市場上有許多數據分析工具,但是其中大多數不是開源的。 這使得仍處于數據科學探索階段的個人用戶很難。

These three tools are my top favorite to dabble with small Data Analytics problems. They can save an immense amount of time for newbies who might be daunted with the idea of learning to code.

這三個工具是我最喜歡的小數據分析問題。 對于那些可能對學習編碼的想法望而卻步的新手來說,它們可以節省大量時間。

This list is based on tools available in late 2019. I will update this if I find any more similar tools. I hope you find this story helpful in beginning your journey into Data Analytics!

該列表基于2019年末可用的工具。如果我發現更多類似的工具,我將對其進行更新。 我希望您發現這個故事對您開始數據分析之旅有所幫助!

翻譯自: https://towardsdatascience.com/explore-data-analytics-with-zero-coding-skills-for-free-f2c982d1e2d6

分析工作試用期收獲

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/390846.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/390846.shtml
英文地址,請注明出處:http://en.pswp.cn/news/390846.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

select的一些問題。

這個要怎么統計類別數呢? 哇哇哇 解決了。 之前怎么沒想到呢?感謝一樓。轉載于:https://www.cnblogs.com/AbsolutelyPerfect/p/7818701.html

html5語義化標記元素_語義HTML5元素介紹

html5語義化標記元素Semantic HTML elements are those that clearly describe their meaning in a human- and machine-readable way. 語義HTML元素是以人類和機器可讀的方式清楚地描述其含義的元素。 Elements such as <header>, <footer> and <article> …

重學TCP協議(12)SO_REUSEADDR、SO_REUSEPORT、SO_LINGER

1. SO_REUSEADDR 假如服務端出現故障&#xff0c;主動斷開連接以后&#xff0c;需要等 2 個 MSL 以后才最終釋放這個連接&#xff0c;而服務重啟以后要綁定同一個端口&#xff0c;默認情況下&#xff0c;操作系統的實現都會阻止新的監聽套接字綁定到這個端口上。啟用 SO_REUSE…

殘疾科學家_數據科學與殘疾:通過創新加強護理

殘疾科學家Could the time it takes for you to water your houseplants say something about your health? Or might the amount you’re moving around your neighborhood reflect your mental health status?您給植物澆水所需的時間能否說明您的健康狀況&#xff1f; 還是…

POJ 3660 Cow Contest [Floyd]

POJ - 3660 Cow Contest http://poj.org/problem?id3660 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is un…

Linux 網絡相關命令

1. telnet 1.1 檢查端口是否打開 執行 telnet www.baidu.com 80&#xff0c;粘貼下面的文本&#xff08;注意總共有四行&#xff0c;最后兩行為兩個空行&#xff09; telnet [domainname or ip] [port]例如&#xff1a; telnet www.baidu.com 80 如果這個網絡連接可達&…

JSON.parseObject(String str)與JSONObject.parseObject(String str)的區別

一、首先來說說fastjson fastjson 是一個性能很好的 Java 語言實現的 JSON 解析器和生成器&#xff0c;來自阿里巴巴的工程師開發。其主要特點是&#xff1a; ① 快速&#xff1a;fastjson采用獨創的算法&#xff0c;將parse的速度提升到極致&#xff0c;超過所有基于Java的jso…

jQuery Ajax POST方法

Sends an asynchronous http POST request to load data from the server. Its general form is:發送異步http POST請求以從服務器加載數據。 其一般形式為&#xff1a; jQuery.post( url [, data ] [, success ] [, dataType ] )url : is the only mandatory parameter. This…

spss23出現數據消失_改善23億人口健康數據的可視化

spss23出現數據消失District Health Information Software, or DHIS2, is one of the most important sources of health data in low- and middle-income countries (LMICs). Used by 72 different LMIC governments, DHIS2 is a web-based open-source platform that is used…

01-hibernate注解:類級別注解,@Entity,@Table,@Embeddable

Entity Entity:映射實體類 Entity(name"tableName") name:可選&#xff0c;對應數據庫中一個表&#xff0c;若表名與實體類名相同&#xff0c;則可以省略。 注意&#xff1a;使用Entity時候必須指定實體類的主鍵屬性。 第一步&#xff1a;建立實體類&#xff1a; 分別…

leetcode 1707. 與數組中元素的最大異或值

題目 給你一個由非負整數組成的數組 nums 。另有一個查詢數組 queries &#xff0c;其中 queries[i] [xi, mi] 。 第 i 個查詢的答案是 xi 和任何 nums 數組中不超過 mi 的元素按位異或&#xff08;XOR&#xff09;得到的最大值。換句話說&#xff0c;答案是 max(nums[j] XO…

MySQL基礎入門學習【2】數據類型

數據類型&#xff1a;指列、存儲過程參數、表達式和局部變量的數據特征&#xff0c;它決定了數據的存儲格式&#xff0c;代表了不同的信息類型 &#xff08;1&#xff09; 整型(按存儲范圍分類)&#xff1a;TINYINT&#xff08;1字節&#xff09; SAMLLINT&#xff08;2字節&am…

昆西·拉森的凈資產是多少?

People ask me how much I get paid all the time. It comes up on podcast interviews, Quora questions, and face-to-face discussions.人們問我&#xff0c;我一直得到多少報酬。 它來自播客訪談&#xff0c;Quora問題和面對面的討論。 And people search this question a…

COVID-19研究助理

These days scientists, researchers, doctors, and medical professionals face challenges to develop answers to their high priority scientific questions.如今&#xff0c;科學家&#xff0c;研究人員&#xff0c;醫生和醫學專家面臨著挑戰&#xff0c;無法為其高度優先…

Node.js umei圖片批量下載Node.js爬蟲1.00

這個爬蟲在abaike爬蟲的基礎上改改圖片路徑和下一頁路徑就出來了&#xff0c;代碼如下&#xff1a; // // umei圖片批量下載Node.js爬蟲1.00 // 2017年11月13日 //// 內置http模塊 var httprequire("http");// 內置文件處理模塊&#xff0c;用于創建目錄和圖片文件 v…

交通銀行信息技術管理部副總經理張漫麗:交通銀行“大數據+人工智能”應用研究...

文 | 交通銀行信息技術管理部副總經理張漫麗 大數據隱含著巨大的社會、經濟、科研價值&#xff0c;已引起了各行各業的高度重視。如果能通過人工智能技術有效地組織和使用大數據&#xff0c;將對社會經濟和科學研究發展產生巨大的推動作用&#xff0c;同時也孕育著前所未有的機…

安軟件一勞永逸_如何克服一勞永逸地公開演講的恐懼

安軟件一勞永逸If you’re like most people, the idea of public speaking terrifies you (it terrifies me too). So how do you get over those jitters, get up on stage, and give an amazing talk? First, a disclaimer: this article is purely about your stage prese…

Go語言實戰 : API服務器 (8) 中間件

為什么需要中間件 我們可能需要對每個請求/返回做一些特定的操作&#xff0c;比如 記錄請求的 log 信息在返回中插入一個 Header部分接口進行鑒權 這些都需要一個統一的入口。這個功能可以通過引入 middleware 中間件來解決。Go 的 net/http 設計的一大特點是特別容易構建中間…

缺失值和異常值的識別與處理_識別異常值-第一部分

缺失值和異常值的識別與處理&#x1f4c8;Python金融系列 (&#x1f4c8;Python for finance series) Warning: There is no magical formula or Holy Grail here, though a new world might open the door for you.警告 &#xff1a; 這里沒有神奇的配方或圣杯&#xff0c;盡管…

SQL Server 常用分頁SQL

今天無聊和朋友討論分頁&#xff0c;發現網上好多都是錯的。網上經常查到的那個Top Not in 或者Max 大部分都不實用&#xff0c;很多都忽略了Order和性能問題。為此上網查了查&#xff0c;順帶把2000和2012版本的也補上了。 先說說網上常見SQL的錯誤或者說局限問題 12345select…