提高機器學習質量的想法_如何提高機器學習的數據質量?

提高機器學習質量的想法

The ultimate goal of every data scientist or Machine Learning evangelist is to create a better model with higher predictive accuracy. However, in the pursuit of fine-tuning hyperparameters or improving modeling algorithms, data might actually be the culprit. There is a famous Chinese saying “工欲善其事,必先其器” which literally translates to — To do a good job, an artisan needs the best tools. So if the data are generally of poor quality, regardless of how good a Machine Learning model is, the results will always be subpar at best.

每個數據科學家或機器學習傳播者的最終目標是創建一個具有更高預測準確性的更好模型。 但是,在追求微調超參數或改進建模算法時,數據實際上可能是罪魁禍首。 中國有句名言“工欲善其事,必先其器”,字面意思是:要做好工作,工匠需要最好的工具。 因此,如果數據質量通常很差,那么無論機器學習模型的質量如何,結果總是最好的。

Why is data preparation so important?

為什么數據準備如此重要?

Image for post
Photo by Austin Distel on Unsplash
Austin Distel在Unsplash上拍攝的照片

It is no secret that data preparation in the process of data analytics is ‘an essential but unsexy’ task and more than half of data scientists regard cleaning and organizing data as the least enjoyable part of their work.

眾所周知 ,數據分析過程中的數據準備是“一項必不可少的但并不性感的任務”, 超過一半的數據科學家將清理和整理數據視為工作中最不愉快的部分。

Multiple surveys with data scientists and experts have indeed confirmed the common 80/20 trope — whereby 80% of the time is mired in the mundane janitorial work of prepping data, from collecting, cleaning to finding insights of the data (data wrangling or munching); leaving only 20% for the actual analytic work by modeling and building algorithm.

與數據科學家和專家進行的多次調查確實證實了常見的80/20斜率-80%的時間都沉浸在準備數據的平凡的清潔工作中,從收集,清理到發現數據見解(數據整理或壓縮) ; 通過建模和構建算法只剩下20%的實際分析工作。

Thus, the Achilles heel of a data analytic process is in fact the unjustifiable amount of time spent on just data preparation. For data scientists, this can be a big hurdle in productivity for building a meaningful model. For businesses, this can be a huge blow to the resources as the investment into data analytics only sees the remaining one-fifth of the allocation dedicated to the original intent.

因此,數據分析過程的致命弱點實際上是僅僅花費在數據準備上的無用時間。 對于數據科學家而言,這對于構建有意義的模型可能是生產力的一大障礙。 對于企業而言,這可能是對資源的巨大打擊,因為對數據分析的投資僅看到剩余的五分之一專用于原始意圖。

Image for post

Heard of GIGO (garbage in, garbage out)? This is exactly what happens here. Data scientists arrive at a task with a given set of data, with the expectation to build the best model to fulfill the goal of the task. But halfway thru the assignment, he realizes that no matter how good the model is he can never achieve better results. After going back-and-forth he finds out that there are lapses in data quality and started scrubbing thru the data to make them “clean and usable”. By the time the data are finally fit again, the dateline is slowly creeping in and resources started draining up, and he is left with a limited amount of time to build and refine the actual model he was hired for.

聽說過GIGO(垃圾進,垃圾出)嗎? 這正是這里發生的情況。 數據科學家使用給定的數據集完成一項任務,并期望構建最佳模型來實現任務目標。 但是在完成任務的途中,他意識到無論模型多么出色,他都永遠無法取得更好的結果。 經過反復研究,他發現數據質量存在問題,并開始對數據進行清理以使其“干凈且可用”。 等到數據終于重新適合時,日期線就慢慢爬進去,資源開始消耗drain盡,他只剩下有限的時間來建立和完善他所雇用的實際模型。

This is akin to a product recall. When defects are discovered in products already on the market, it is often too late to remedy and products have to be recalled to ensure the public safety of consumers. In most cases, the defects are results of negligence in quality control of the components or ingredients used in the supply chain. For example, laptops being recalled due to battery issues or chocolates being recalled due to contamination in the dairy produce. Be it a physical or digital product, the staggering similarity we see here is that it is always the raw material taking the blame.

這類似于產品召回。 如果在市場上已有的產品中發現缺陷,通常為時已晚,無法補救,必須召回產品以確保消費者的公共安全。 在大多數情況下,缺陷是供應鏈中使用的組件或成分的質量控制疏忽的結果。 例如,由于電池問題而召回筆記本電腦 ,或者由于乳制品中的污染而召回巧克力 。 無論是物理產品還是數字產品,我們在這里看到的驚人相似之處都在于,總是責怪原材料。

But if data quality is a problem, why not just improve it?

但是,如果數據質量有問題,為什么不僅僅改善它呢?

To answer this question, we first have to understand what is data quality.

要回答這個問題,我們首先必須了解什么是數據質量。

Tindependent quality as the measure of the agreement between data views presented and the same data in real-world based on inherent characteristics and features; secondly, the quality of dependent application — a measure of conformance of the data to user needs for intended purposes.

T 獨立質量是衡量基于固有特征和特征的數據視圖與現實世界中相同數據之間一致性的度量; 其次, 從屬應用程序的質量-衡量數據是否符合預期目的用戶需求的量度。

Let’s say you are a university recruiter trying to recruit fresh grads for entry-level jobs. You have a pretty accurate contact list but as you go thru the list you realize that most of the contacts are people over 50 years old, deeming it unsuitable for you to approach them. By applying the definition, this scenario fulfills only the first half of the complete definition — the list has the accuracy and consists of good data. But it does not meet the second criteria — the data, no matter how accurate are not suitable for the application.

假設您是一位大學招聘人員,正在嘗試為入門級工作招募應屆畢業生。 您有一個非常準確的聯系人列表,但是當您瀏覽列表時,您會意識到大多數聯系人都是50歲以上的人,認為不適合與他們聯系。 通過應用定義,此方案僅滿足完整定義的前半部分-列表具有準確性,并包含良好的數據。 但是它不符合第二個標準-數據,無論多么精確,都不適合該應用程序。

In this example, accuracy is the dimension we are looking at to assess the inherent quality of the data. There are a lot more different dimensions out there. To give you an idea of which dimensions are commonly studied and researched in peer-reviewed literature, here is a histogram showing the top 6 dimensions after studying 15 different data quality assessment methodologies involving 32 dimensions.

在此示例中,準確性是我們要評估的數據固有質量的維度。 那里還有更多不同的尺寸。 為了讓您了解在同行評審的文獻中通常研究和研究哪些維度,下面的直方圖顯示了研究15種不同的數據質量評估方法(涉及32個維度)后的前6個維度。

Image for post

A systemic approach to Data Quality Assessment

數據質量評估的系統方法

Image for post

If you fail to plan, you plan to fail. A good systemic approach cannot be successful without a good planning. To have a good plan, you need to have a thorough understanding of the business, especially on problems associating with data quality. In the previous example, one should be aware that the contact list, albeit correct has a data quality problem of not being applicable to achieve the goal of the assigned task.

如果您沒有計劃,您計劃失敗。 沒有良好的計劃,好的系統方法就不會成功。 要制定好的計劃,您需要對業務有透徹的了解 ,尤其是在與數據質量相關的問題上。 在前面的示例中,應該知道聯系人列表(盡管正確)存在數據質量問題,不適用于實現所分配任務的目標。

After the problems become clear, data quality dimensions to be investigated should be defined. This can be done using an empirical approach like surveys among stakeholders to find out which dimension matters the most in reference to the data quality problems.

在問題明確之后,應該定義要研究的數據質量維度。 可以使用經驗方法(例如,在利益相關者之間進行調查)來完成,以找出哪個維度相對于數據質量問題最為重要。

A set of assessment steps should follow suit. Design a way for the implementation so that these steps can map the assessment based on selected dimensions to the actual data. For instance, the following five requirements can be used as an example:

一套評估步驟也應隨之而來。 設計一種實現方式,以便這些步驟可以將基于選定維度的評估映射到實際數據。 例如,可以使用以下五個要求作為示例:

[1] Timeframe — Decide on an interval for when the investigative data are collected.

[1]時間范圍-決定收集調查數據的時間間隔。

[2] Definition — Define a standard on how to differentiate the good from the bad data.

[2]定義-定義有關如何區分好數據和壞數據的標準。

[3] Aggregation — How to quantify the data for the assessment.

[3]匯總-如何量化評估數據。

[4] Interpretability — A mathematical expression to assess the data.

[4]可解釋性-評估數據的數學表達式。

[5] Threshold —Select a cut-off point to evaluate the results.

[5]閾值—選擇一個截止點以評估結果。

Once the assessment methodologies are in place, it is time to get hands-on and carry out the actual assessment. After the assessment, a reporting mechanism can be set up to evaluate the results. If the data quality is satisfactory, then the data are fit for further analytic purposes. Else, the data have to be revised and potentially to be collected again. An example can be seen in the following illustration.

評估方法到位后,就可以動手進行實際評估了。 評估之后 ,可以建立報告機制來評估結果。 如果數據質量令人滿意,則將數據用于進一步的分析目的。 否則,必須修改數據并可能再次收集。 下圖顯示了一個示例。

Image for post

Conclusion

結論

There is no one-size-fits-all solution for all data quality problems, as the definition outlined above, half of the data quality aspect is highly subjective. However, in the process of data quality assessment, we can always use a systemic approach to evaluate and assess data quality. While this approach is largely objective and relatively versatile, some domain knowledge is still required. For example in the selection of data quality dimension. Data Accuracy and Completeness might be critical aspects of the data for use case A but for use case B these dimensions might be less important.

對于所有數據質量問題,沒有一種千篇一律的解決方案,正如上面概述的定義,數據質量方面的一半是高度主觀的。 但是,在數據質量評估過程中,我們始終可以使用系統的方法來評估和評估數據質量。 盡管此方法主要是客觀的并且相對通用,但是仍需要一些領域知識。 例如在選擇數據質量維度時。 對于用例A,數據準確性和完整性可能是數據的關鍵方面,但對于用例B,這些維度可能不太重要。

翻譯自: https://towardsdatascience.com/how-to-improve-data-preparation-for-machine-learning-dde107b60091

提高機器學習質量的想法

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/388794.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/388794.shtml
英文地址,請注明出處:http://en.pswp.cn/news/388794.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

mysql 集群實踐_MySQL Cluster集群探索與實踐

MySQL集群是一種在無共享架構(SNA,Share Nothing Architecture)系統里應用內存數據庫集群的技術。這種無共享的架構可以使得系統使用低廉的硬件獲取高的可擴展性。MySQL集群是一種分布式設計,目標是要達到沒有任何單點故障點。因此,任何組成部…

Python基礎:搭建開發環境(1)

1.Python語言簡介 2.Python環境 Python環境產品存在多個。 2.1 CPython CPython是Python官方提供的。一般情況下提到的Python就是指CPython,CPython是基于C語言編寫的。 CPython實現的解釋器將源代碼編譯為字節碼(ByteCode),再由虛…

python數據結構之隊列(一)

隊列概念隊列(queue)是只允許在一端進行插入操作,而在另一端進行刪除操作的線性表。隊列是一種先進先出的(First In First Out)的線性表,簡稱FIFO。允許插入的一端為隊尾,允許刪除的一端為隊頭。…

Android實現圖片放大縮小

Android實現圖片放大縮小 package com.min.Test_Gallery; import Android.app.Activity; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Color; import android.graphics.Matrix; import android.os.Bun…

matlab散點圖折線圖_什么是散點圖以及何時使用

matlab散點圖折線圖When you were learning algebra back in high school, you might not have realized that one day you would need to create a scatter plot to demonstrate real-world results.當您在高中學習代數時,您可能沒有意識到有一天需要創建一個散點圖…

java判斷題_【Java判斷題】請大神們進來看下、這些判斷題你都知道多少~

該樓層疑似違規已被系統折疊 隱藏此樓查看此樓、判斷改錯題(每題2分,共20分)(正確的打√,錯誤的打并說明原因)1、 Java系統包提供了很多預定義類,我們可以直接引用它們而不必從頭開始編寫程序。 ( )2、 程序可以用字符‘*’替代一個TextField中的每個字…

PoPo數據可視化第8期

PoPo數據可視化 聚焦于Web數據可視化與可視化交互領域,發現可視化領域有意思的內容。不想錯過可視化領域的精彩內容, 就快快關注我們吧 :) 微信訂閱號:popodv_com谷歌決定關閉云可視化服務 Fusion Tables谷歌宣布即將關閉其 Fusion Tables 云服務&#x…

AC自動機題單

AC自動機題目 真的超級感謝xzy 真的幫到我很多 題單 [X] [luogu3808]【模板】AC自動機(簡單版) https://www.luogu.org/problemnew/show/P3808[X] [luogu3796]【模板】AC自動機(加強版)https://www.luogu.org/problemnew/show/P37…

java list用法_Java List 用法詳解及實例分析

Java List 用法詳解及實例分析Java中可變數組的原理就是不斷的創建新的數組,將原數組加到新的數組中,下文對Java List用法做了詳解。List:元素是有序的(怎么存的就怎么取出來,順序不會亂),元素可以重復(角標1上有個3,角標2上也可以…

python字符串和List:索引值以 0 為開始值,-1 為從末尾的開始位置;值和位置的區別哦...

String(字符串)Python中的字符串用單引號 或雙引號 " 括起來,同時使用反斜杠 \ 轉義特殊字符。 字符串的截取的語法格式如下: 變量[頭下標:尾下標]索引值以 0 為開始值,-1 為從末尾的開始位置。[一個是值&#x…

邏輯回歸 python_深入研究Python的邏輯回歸

邏輯回歸 pythonClassification techniques are an essential part of machine learning and data science applications. Approximately 70% of problems in machine learning are classification problems. There are lots of classification problems that are available, b…

spring定時任務(@Scheduled注解)

(一)在xml里加入task的命名空間 xmlns:task"http://www.springframework.org/schema/task" http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-4.1.xsd(二)啟用注…

net user 用戶名 密碼 /add 建立用戶

net user 用戶名 密碼 /add 建立用戶 other: net use \\ip\ipc$ " " /user:" " 建立IPC空鏈接 net use \\ip\ipc$ "密碼" /user:"用戶名" 建立IPC非空鏈接 net use h: \\ip\c$ "密碼" /user:"用戶名" 直接登陸后映…

JavaScript是如何工作的:與WebAssembly比較及其使用場景

*摘要:** WebAssembly未來可期。 原文:JavaScript是如何工作的:與WebAssembly比較及其使用場景作者:前端小智Fundebug經授權轉載,版權歸原作者所有。 這是專門探索 JavaScript及其所構建的組件的系列文章的第6篇。 如果…

友元 java_C++ 友元關系詳解

在C中,在某些情況下,允許特定的非成員函數訪問一個類的私有成員,同時仍然阻止一般的訪問,這是很方便做到的。例如,被重載的操作符,如輸入或輸出操作符,經常需要訪問類的私有數據成員。這些操作符…

Matplotlib中的“ plt”和“ ax”到底是什么?

Indeed, as the most popular and fundamental data visualisation library, Matplotlib is kind of confusing in some perspectives. It is usually to see that someone asking about的確,作為最受歡迎的基礎數據可視化庫,Matplotlib在某些方面令人困…

【數據庫的備份與還原】 .

差異備份,日志備份還原 IF DB_ID(db) IS NOT NULL DROP DATABASE db GO CREATE DATABASE db GO CREATE TABLE db.dbo.T(ID INT PRIMARY KEY IDENTITY(1,1)); GO BACKUP DATABASE db TO DISKd:/1.bak WITH FORMAT GO INSERT INTO db.dbo.T DEFAULT VALUES GO BACKUP DATAB…

方法 數組

方法的特點: 定義方法可以將功能代碼進行封裝 封裝:兩方面含義: 1.將有特定邏輯的多條代碼組合成一個整體!! 2.方便維護,提高代碼的復用性(聯想變量的作用域問題) 方法只有被調用才會被執行!!(方法調用的流程) 方法的重載: 兩同一不同: 同類,同方法名 形參列表不同 …

java 控制jsp_JSP學習之Java Web中的安全控制實例詳解

普通用戶界面修改登錄的Servlet,修改后的代碼如下:LoginProcess.java代碼:package servlet;import javabean.User;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.RequestDispatcher;import javax.servlet.Ser…

PHP 基礎 自動類型轉換之比較運算符

<?php var_dump( 123fg456>122); var_dump(some string 0); var_dump(123.0 123d456); var_dump(0 "a"); var_dump("1" "01"); var_dump("1" "1e0"); 當數字與字符串進行比較運算時&#xff0c;字符串會自動轉…