愛因斯坦提出的邏輯性問題_提出正確問題的重要性

愛因斯坦提出的邏輯性問題

We live in a world that values answers. We were taught in school to learn how to answer questions in exams, we were conditioned to go to work knowing that we need to have the answers and our society, by and large, focuses on finding the solutions rather than figuring out if we are asking the right questions. Just like most people who have been through the traditional education system and started working in a corporate job, I was trained to have the answers, I was taught that my contribution and value lie in my ability to solve problems by knowing the right answers. While I do think that problem solving and the ability to find the right answers is a valuable skill to have, I would like to shed some light on the importance of the skill that precedes it, the skill of asking the right questions.

我們生活在重視答案的世界中。 我們在學校里被教導要學習如何在考試中回答問題,我們有條件去上班,知道我們需要得到答案,并且我們的社會大體上都專注于尋找解決方案,而不是弄清楚我們是否在提問正確的問題。 就像大多數經歷過傳統教育體系并開始從事公司工作的人一樣,我也受過訓練以獲得答案,我被教導我的貢獻和價值在于我通過了解正確答案來解決問題的能力。 雖然我確實認為解決問題和找到正確答案的能力是一項寶貴的技能,但我想闡明一些在其之前的技能,提出正確問題的技能的重要性。

Questions and answers are by definition linked together but they are a very different skillset. Seeking answers is a process of elimination through research and experimentation, trying to piece together different information and narrow things down to a solution. But asking questions is a process of expansion through critical thinking and imagination. It is understandable why as a society we don’t value the cost of asking the right questions because in some way the more questions we ask, the more work we need to do and the further away we are from finishing what we need to do. This creates a systemic problem that favours short term patches over long term solutions.

根據定義,問題和答案鏈接在一起,但是它們是非常不同的技能。 尋求答案是一個通過研究和實驗消除的過程,它試圖將不同的信息組合在一起,然后將事情縮小為解決方案。 但是,提出問題是通過批判性思維和想象力擴展的過程。 可以理解的是,為什么作為一個社會,我們不珍惜提出正確問題的成本,因為在某種程度上,我們提出的問題越多,我們需要做的工作就越多,而我們離完成需要做的工作就越遠。 這就產生了一個系統性問題,與長期解決方案相比,它更傾向于短期補丁。

這對數據科學家意味著什么? (What does that mean for a data scientist?)

This problem exists everywhere, but it is especially prominent in a solution-orientated field like data science and engineering, where the professions are built on top of solving difficult problems. Data scientists are prone to jumping right into solution mode before we even fully understand the problem because we think we have the answers. If there is a conversion problem, we can do personalised targeting. If there is a retention problem, we can build a churn prediction model. While those might all be valid solutions, they might just be addressing the symptoms and not the root cause.

這個問題無處不在,但是在諸如數據科學和工程等以解決方案為導向的領域中尤為突出,在該領域中,專業是建立在解決難題上的。 數據科學家傾向于完全進入解決方案模式,甚至在我們完全理解問題之前,因為我們認為我們已經找到了答案。 如果存在轉化問題,我們可以進行個性化定位。 如果存在保留問題,我們可以建立客戶流失預測模型。 盡管這些可能都是有效的解決方案,但它們可能只是解決癥狀而不是根本原因。

不問正確問題的代價 (The cost of not asking the right questions)

It’s probably natural to think that a solution is a solution even if it only solves the symptoms. Especially in a world that favours immediate actions and quick fixes, we never seem to have the time to dig deeper. I am not going to argue that for every single issue that comes up, you need to deep dive into whether you are asking the right questions, but I will stand by the fact that if we are asking the right questions, more often than not, we won’t be in situations fixing problems that shouldn’t come up in the first place.

即使解決方案只能解決癥狀,也很自然地認為解決方案就是解決方案。 尤其是在一個主張立即采取行動和快速解決問題的世界中,我們似乎從來沒有時間去深入研究。 我不會爭辯說,對于每一個出現的問題,您都需要深入研究自己是否提出正確的問題,但是我會堅持這樣一個事實,即如果我們提出正確的問題,通常是,我們將不會解決最初不應該出現的問題。

In the context of data science, the cost often comes in two main ways, wasted resources and unintended consequences. The first one is relatively straight forward, if we don’t ask the right questions, we end up wasting time and effort building a solution that is not fit for purpose. The second one is more nefarious because if we are optimising a system based on a wrong metric, we could be systemically worsening the situation. For example, if we treat a churn problem as an isolated incident and focus on improving retention without asking the question of why people are churning, we might miss problems that go back to customer acquisition, through to user experience and engagement before it becomes a churn problem.

在數據科學的背景下,成本通常來自兩種主要方式,即浪費資源和意外后果。 第一個是相對簡單的,如果我們不提出正確的問題,我們最終會浪費時間和精力來構建不適合目標的解決方案。 第二個則更為危險,因為如果我們基于錯誤的指標優化系統,則可能會導致系統惡化。 例如,如果我們將客戶流失問題視為一個孤立的事件,并專注于提高保留率,而又不問人們為什么會流失的問題,那么我們可能會錯過一些問題,這些問題可以追溯到客戶獲取,用戶體驗和參與度,直到客戶流失問題。

Every system is perfectly designed to get the results it gets

每個系統都經過精心設計,以獲取所獲得的結果

There is value in having the right answers for every question that comes up, but the cost of not asking the right questions is a bit more subtle and long term. If we always prioritise and value quick fixes, we are subconsciously encouraging problems to occur. We often recognise people who come in and fix the problems, but most of the time we don’t recognise the people who asked the right questions when it comes to designing that system in the first place. So the real hidden cost of not asking the right questions is a society or an organisation that nurtures people who focus on the short term rather than the long term. We will never be able to escape from problems and the need of having answers, but what we want to strive for is the ability to prevent that from happening as much as possible by asking the right questions upfront.

為每個出現的問題都提供正確的答案是有價值的,但是不提出正確的問題的代價會更加微妙和長期。 如果我們始終優先考慮并重視快速解決方案,那么我們在潛意識中鼓勵問題的發生。 我們通常會認識到那些會解決問題的人,但是大多數時候,我們一開始并不了解那些在設計系統時提出正確問題的人。 因此,不提出正確問題的真正隱藏成本是一個社會或組織,要培養注重短期而不是長期的人。 我們將永遠無法擺脫問題和獲得答案的需要,但我們要努力做到的是通過預先提出正確的問題來盡可能避免這種情況發生的能力。

如何提出正確的問題? (How to ask the right questions?)

In business, people often turn towards technical resources with a technical problem. It makes sense right? However, what happens when we are sick? Let’s say you feel pain and you go to the doctor and all you got was painkillers because that’s your symptoms. You would feely a little short-changed because the doctor didn’t diagnose you properly and try to understand why the pain exists in the first place. The difference here is our presumed knowledge, when we think we know what the problem is, we have a closed mind looking for a specific answer, but when we don’t know what the problem is, we have an opened mind hoping others will help figure out the problem. Here are a few things that can help us combat the tendencies to jump into solutions before we even understand the question.

在業務中,人們經常將技術問題轉向技術資源。 有道理吧? 但是,當我們生病時會發生什么? 假設您感到疼痛,然后去看醫生,而您得到的只是止痛藥,因為那是您的癥狀。 您可能會感到有點變化,因為醫生沒有正確診斷您,并試圖首先了解為什么會出現疼痛。 此處的區別是我們的假定知識,當我們認為知道問題所在時,我們會閉口尋找一個具體的答案,但是當我們不知道問題出在哪里時,我們會持開放的態度,希望其他人會有所幫助找出問題所在。 這里有幾件事可以幫助我們克服在解決問題之前就跳入解決方案的趨勢。

當心你的假設 (Beware of your assumptions)

Before we even get to ask the questions, we come to the table with a set of assumptions. Assumptions help us move forward quicker and provide the crucial context to the issues at hand and they are powerful. However, they are also dangerous as people often assume things that are not necessarily true and most of the people get to very different conclusions because they are basing their thinking off a different set of assumptions. Starting from facts and data is a good way to keep assumptions from being skewed, but we must learn to be as unbiased as possible during that process. Aligning assumptions with reality gets us to the actual starting point where a logical discussion can be had and the right questions can be asked.

在開始提出問題之前,我們先提出一組假設。 假設可以幫助我們更快地前進,并為眼前的問題提供關鍵的背景,并且它們具有強大的作用。 但是,它們也很危險,因為人們經常會認為不一定是正確的事情,并且大多數人會得出截然不同的結論,因為他們基于不同的假設來思考。 從事實和數據開始是防止假設歪斜的好方法,但是在此過程中我們必須學會保持公正。 使假設與現實保持一致可以使我們到達可以進行邏輯討論并可以提出正確問題的實際起點。

問為什么我們要這樣做? (Ask why are we doing this?)

It is tempting to provide an answer to an immediate question because we know it but once we switch to solution mode, it is easy to get tunnel-visioned and lose track of what we are doing. So while it seems trivial, we should be asking ourselves why we are doing what we are doing every so often. It’s important to keep an open mind and be honest with ourselves. There will be times when we invested weeks or even months into something only to realise that it shouldn’t have been done in the first place. A timely critical assessment of why we are doing this can help bring us back on track and focus on the right questions.

提供一個即時問題的答案是很誘人的,因為我們知道它,但是一旦我們切換到解決方案模式,就很容易獲得隧道規劃的視野,并且無法跟蹤我們的工作。 因此,盡管看起來很瑣碎,但我們應該自問為什么我們經常這樣做。 保持開放的態度并對自己誠實是很重要的。 有時候,我們花了數周甚至數月的時間來投資某件事,只是意識到這本來不應該做的。 及時對我們為什么這樣做進行批判性評估,可以幫助我們回到正軌,并專注于正確的問題。

激勵解決方案診斷 (Incentivise diagnostics over solutions)

To tackle this issue long term, we need to set up our environment to incentivise diagnostics as much if not more than solutions. We will always be conditioned to focus on coming up with answers if we don’t fundamentally change how we place value on good questions and good answers. While this might sound far fetched, it is something that we can all contribute towards. As tempting as it is to ask your colleagues or friends for a solution, ask them what they think the problem is and maybe we will gain a new perspective and reframe our situation differently.

為了長期解決此問題,我們需要建立環境以激發診斷能力,甚至不僅僅限于解決方案。 如果我們不從根本上改變我們如何重視好問題和好答案的價值,我們將始終有條件專注于提出答案。 盡管這聽起來有些牽強,但我們所有人都可以為此作出貢獻。 向您的同事或朋友尋求解決方案很誘人,問他們他們認為問題是什么,也許我們將獲得一個新的觀點并以不同的方式重新構造我們的處境。

現在怎么辦? (What now?)

We face problems every day and those are great opportunities for us to practice asking the right questions. It is unintuitive and at times it might even feel frustrating to take a step back and think if we are asking the right questions. However, we must consider the consequences of not asking the right questions because at best we will be getting the right answers to the wrong questions and that should not an acceptable outcome for any of us.

我們每天都面臨問題,這些都是我們練習提出正確問題的絕佳機會。 這是不直觀的,有時退后一步來思考我們是否提出正確的問題甚至會感到沮喪。 但是,我們必須考慮不提出正確問題的后果,因為充其量我們只會為錯誤問題獲得正確答案,這對我們任何人都不應該接受。

If you have enjoyed my content and share my view on the topic, sign up for more at https://jchoi.solutions/subscribe

如果您喜歡我的內容并分享了對該主題的看法,請在 https://jchoi.solutions/subscribe上 注冊以獲取更多信息。

翻譯自: https://towardsdatascience.com/the-importance-of-asking-the-right-questions-93aa3128500a

愛因斯坦提出的邏輯性問題

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/387859.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/387859.shtml
英文地址,請注明出處:http://en.pswp.cn/news/387859.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

python安裝包

由于Google、YouTube等大型公司的推廣,Python編程語言越來越受歡迎,很多編程愛好者,也將Python做為了首先的編程語言。 今天我們就來講一下,學習的第一步,安裝Python IDLE編輯器,也它的調試和使用。 第一步…

104 權限 sudo 解壓縮

主要內容:https://www.cnblogs.com/pyyu/articles/9355477.html 1 查看系統版本信息: #查看系統版本信息 cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) #查看內核版本號 uname -r 3.10.0-693.el7.x86_64 #查看系統多少位 uname -m x86_64 #查看內核所有信息…

Cloud Native 介紹

為什么80%的碼農都做不了架構師?>>> 背景 Cloud Native表面看起來比較容易理解,但是細思好像又有些模糊不清:Cloud Native和Cloud關系是啥?它用來解決什么問題?它是一個新技術還是一個新的方法&#xff1f…

餐廳數據分析報告_如何使用數據科學選擇理想的餐廳設計場所

餐廳數據分析報告空間數據科學 (Spatial Data Science) Designing any product requires a lot of analysis and research. It is also true for designing any building. Before we begin to design any building, we collect information about the location where we are de…

P2P原理及UDP穿透簡單說明

本文章出自cnntec.com的AZ貓著,如需要轉發,請注明來自cnntec.com Peer-To-Peer縮寫P2P 中文稱之為對等聯網。 用途于交流,比如QQ,MSN等等。 文件傳輸、分布式數據計算等等。 這里我們主要是是簡單講解一下UDP實現NAT的穿透&…

PCB genesis 大孔擴孔(不用G84命令)實現方法

PCB鉆孔時,當鉆刀>6.3mm時,超出鉆孔范圍,鉆孔工序是沒有這么大的鉆刀,當這種情況,工程CAM會都采用G84命令用小孔擴孔的方式制作, 在這里介紹一種如果不用G84命令,用程序實現將大孔生成小孔鉆孔達到擴孔的目的。 一.我們先了解一下G84命令擴孔 孔尺寸大小 孔密度 連一篇文章有…

一年沒做出量化策略_量化信念:如何做出更好的決定

一年沒做出量化策略By Stuart George, Executive Director of Design Technology at MethodMethod設計技術執行總監Stuart George When Andrew Mason, founder of Groupon, wanted to improve his email conversion metrics, he turned to data analysis. His team tested the…

Android Jetpack組件之數據庫Room詳解(二)

本文涉及Library的版本如下: androidx.room:room-runtime:2.1.0-alpha03androidx.room:room-compiler:2.1.0-alpha03(注解編譯器)回顧一下安卓的SQLiteOpenHelper相關類 首先放一個關于安卓數據庫的類圖: SQLiteOpenHelper是一個抽象類,通常自己實現數據…

圖像識別中的深度學習

來源:《中國計算機學會通訊》第8期《專題》 作者:王曉剛 深度學習發展歷史 深度學習是近十年來人工智能領域取得的重要突破。它在語音識別、自然語言處理、計算機視覺、圖像與視頻分析、多媒體等諸多領域的應用取得了巨大成功。現有的深度學習模型屬于神…

多個css樣式合并到一個“目錄”css文件中

執行訪問jsp后發現沒有效果 同樣的代碼,在html中效果對比如下: 具體原因:不清楚,暫時記著~~~在jsp中不支持import這種css樣式的引用 轉載于:https://www.cnblogs.com/mangwusuozhi/p/10050108.html

Git 學習筆記之 merge

Merge: 1、Fast-forward(快進式) 2、recursice strategy (策略合并,三方合并) Fast-forward 策略合并 //創建一個文件夾,并初始化 Git mkdir GitDemo cd GitDemo git init//初次提交,創建 master 分支 touch master.tx…

熊貓直播 使用什么sdk_沒什么可花的-但是16項基本操作才能讓您開始使用熊貓

熊貓直播 使用什么sdkPython has become the go-to programming language for many data scientists and machine learning researchers. One essential data processing tool for them to make this choice is the pandas library. For sure, the pandas library is so versat…

萌新一手包App前后端開發日記(一)

從事Android移動端也有些日子了,還記得一開始選擇這份工作,是憧憬著有朝一日能讓親朋好友用上自己開發的軟件,但日子久了才發現,并不是所有的公司,所有的項目的適用群體都是“親朋好友”,/無奈臉 攤手。當…

方差,協方差 、統計學的基本概念

一、統計學的基本概念 統計學里最基本的概念就是樣本的均值、方差、標準差。首先,我們給定一個含有n個樣本的集合,下面給出這些概念的公式描述: 均值: 標準差: 方差: 均值描述的是樣本集合的中間點&#xf…

關系型數據庫的核心單元是_核中的數據關系

關系型數據庫的核心單元是Nucleoid is an open source (Apache 2.0), a runtime environment that provides logical integrity in declarative programming, and at the same time, it stores declarative statements so that it doesn’t require external database, in shor…

MongoDB第二天

集合的操作: db.表名稱 show tables / collection db.表名.drop() 文檔的操作: 插入數據 db.表名.insert({"name":"jerry"}) db.insertMany([{"name":"sb",...}]) var ul {"name":"sb"} db.sb.insert(ul) db.sb.…

Python 主成分分析PCA

Python 主成分分析PCA 主成分分析&#xff08;PCA&#xff09;是一種基于變量協方差矩陣對數據進行壓縮降維、去噪的有效方法&#xff0c;PCA的思想是將n維特征映射到k維上&#xff08;k<n&#xff09;&#xff0c;這k維特征稱為主元&#xff0c;是舊特征的線性組合&#xf…

小程序 國際化_在國際化您的應用程序時忘記的一件事

小程序 國際化The hidden bugs waiting to be found by your international users您的國際用戶正在等待發現的隱藏錯誤 While internationalizing our applications, we focus on the things we can see: text, tool-tips, error messages, and the like. But, hidden in our …

三. 性能測試領域

能力驗證&#xff1a; 概念&#xff1a;系統能否在A條件下具備B能力 應用&#xff1a;為客戶進行系統上線后的驗收測試&#xff0c;作為第三方對一個已經部署系統的性能驗證 特點&#xff1a;需要在已確定的環境下運行 需要根據典型場景設計測試方案和用例 一個典型場景包括操…

PCA主成分分析Python實現

作者&#xff1a;拾毅者 出處&#xff1a;http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源碼&#xff1a;https://github.com/csuldw/MachineLearning/tree/master/PCA PCA&#xff08;principle component analysis&#xff09; &#xff0c;主成分分…