libevent網絡編程例子(1)

轉載:http://blog.csdn.net/huangyimo/article/details/46806193

這篇文章介紹下libevent在socket異步編程中的應用。在一些對性能要求較高的網絡應用程序中,為了防止程序阻塞在socket I/O操作上造成程序性能的下降,需要使用異步編程,即程序準備好讀寫的函數(或接口)并向系統注冊,然后在需要的時候只向系統提交讀寫的請求之后就繼續做自己的事情,實際的讀寫操作由系統在合適的時候調用我們程序注冊的接口進行。異步編程會給一些程序猿帶來一些理解和編寫上的困難,因為我們通常寫的一些簡單的程序都是順序執行的,而異步編程將程序的執行順序打亂了,有些代碼什么情況下執行往往不是太清晰,因此也使得編程的復雜度大大增加。
Note:這里系統這個詞使用的不準確,實際上可以是自己封裝的異步調用機制,更常見的是一些可用的庫,比如libevent,ACE等
想了解libevent的工作原理可以自行查詢資料,網上相關的介紹一大堆,也可以自己閱讀源碼進行分析,本文僅從使用的角度做一個簡單的介紹,看如何快速的將libevent引入我們的程序中。任何應用都免不了需要承載其功能的底層OS,libevent也不例外,其內部是通過封裝操作系統的IO復用機制實現的,在linux系統上可能是epoll、kqueu之類的,取決于具體的OS所支持的IO復用方式,在我的系統上是epoll,因此可以理解為libevent提供了一個比epoll更為友好的操作接口,將程序猿從網絡IO處理的細節中解放出來,使其可以專注于目標問題的處理上。
首先,安裝libevent到任意目錄下
wget http://monkey.org/~provos/libevent-1.4.13-stable.tar.gz tar –xzvf libevent-1.4.13-stable.tar.gz cd libevent-1.4.13-stable ./configure --prefix=/home/mydir/libevent make && make install
現在假定我們要設計一個服務器程序,用于接收客戶端的數據,并將接收的數據回寫給客戶端。下面來構造該程序,由于本僅僅是展示一個Demo,因此程序中將不對錯誤進行處理,假設所有的調用都成功
2?#define?PORT 25341 3?#define?BACKLOG 5 4?#define?MEM_SIZE 1024 5? 6?struct?event_base*?base; 7? 8?int?main(int?argc,?char*?argv[]) 9?{ 10?????struct?sockaddr_in my_addr; 11?????int?sock; 12? 13???? sock?=?socket(AF_INET, SOCK_STREAM,?0);? 14?????int?yes?=?1; 15???? setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,?&yes,?sizeof(int)); 16???? memset(&my_addr,?0,?sizeof(my_addr)); 17???? my_addr.sin_family?=?AF_INET; 18???? my_addr.sin_port?=?htons(PORT); 19???? my_addr.sin_addr.s_addr?=?INADDR_ANY; 20???? bind(sock, (struct?sockaddr*)&my_addr,?sizeof(struct?sockaddr)); 21???? listen(sock, BACKLOG); 22? 23?????struct?event?listen_ev; 24?????base?=?event_base_new(); 25???? event_set(&listen_ev, sock, EV_READ|EV_PERSIST, on_accept, NULL); 26???? event_base_set(base,?&listen_ev); 27???? event_add(&listen_ev, NULL); 28???? event_base_dispatch(base); 29? 30?????return?0; 31?}
第13行說明創建的是一個TCP socket。第15行是服務器程序的通常做法,設置了該選項后,在父子進程模型中,當子進程為客戶服務的時候如果父進程退出,可以重新啟動程序完成服務的無縫升級,否則在所有父子進程完全退出前再啟動程序會在該端口上綁定失敗,也即不能完成無縫升級的操作(更多信息可以參考該函數說明或Steven先生的<網絡編程>)。第24行用于創建一個事件處理的全局變量,可以理解為這是一個負責集中處理各種出入IO事件的總管家,它負責接收和派發所有輸入輸出IO事件的信息,這里調用的是函數event_base_new(), 很多程序里這里用的是event_init(),區別就是前者是線程安全的、而后者是非線程安全的,后者在其官方說明中已經被標志為過時的函數、且建議用前者代替,libevent中還有很多類似的函數,比如建議用event_base_dispatch代替event_dispatch,用event_assign代替event_set和event_base_set等,關于libevent接口的詳細說明見其官方說明libevent_doc. 第25行說明在listen_en這個事件監聽sock這個描述字的讀操作,當讀消息到達是調用on_accept函數,EV_PERSIST參數告訴系統持續的監聽sock上的讀事件,如果不加該參數,每次要監聽該事件時就要重復的調用26行的event_add函數,從前面的代碼可知,sock這個描述字是bind到本地的socket端口上,因此其對應的可讀事件自然就是來自客戶端的連接到達,我們就可以調用accept無阻塞的返回客戶的連接了。第26行將listen_ev注冊到base這個事件中,相當于告訴處理IO的管家請留意我的listen_ev上的事件。第27行相當于告訴處理IO的管家,當有我的事件到達時你發給我(調用on_accept函數),至此對listen_ev的初始化完畢。第28行正式啟動libevent的事件處理機制,使系統運行起來,運行程序的話會發現event_base_dispatch是一個無限循環。
下面是on_accept函數的內容
1: void on_accept(int sock, short event, void* arg) 2: { 3: struct sockaddr_in cli_addr; 4: int newfd, sin_size; 5: // read_ev must allocate from heap memory, otherwise the program would crash from segmant fault 6: struct event* read_ev = (struct event*)malloc(sizeof(struct event));; 7: sin_size = sizeof(struct sockaddr_in); 8: newfd = accept(sock, (struct sockaddr*)&cli_addr, &sin_size); 9: event_set(read_ev, newfd, EV_READ|EV_PERSIST, on_read, read_ev); 10: event_base_set(base, read_ev); 11: event_add(read_ev, NULL); 12: }
第9-12與前面main函數的24-26相同,即在代表客戶的描述字newfd上監聽可讀事件,當有數據到達是調用on_read函數。這里有亮點需要注意,一是read_ev需要從堆里malloc出來,如果是在棧上分配,那么當函數返回時變量占用的內存會被釋放,因此事件主循環event_base_dispatch會訪問無效的內存而導致進程崩潰(即crash);第二個要注意的是第9行read_ev作為參數傳遞給了on_read函數。
下面是on_read函數的內容
1: void on_read(int sock, short event, void* arg) 2: { 3: struct event* write_ev; 4: int size; 5: char* buffer = (char*)malloc(MEM_SIZE); 6: bzero(buffer, MEM_SIZE); 7: size = recv(sock, buffer, MEM_SIZE, 0); 8: printf("receive data:%s, size:%d\n", buffer, size); 9: if (size == 0) { 10: event_del((struct event*)arg); 11: free((struct event*)arg); 12: close(sock); 13: return; 14: } 15: write_ev = (struct event*) malloc(sizeof(struct event));; 16: event_set(write_ev, sock, EV_WRITE, on_write, buffer); 17: event_base_set(base, write_ev); 18: event_add(write_ev, NULL); 19: }
第9行,當從socket讀返回0標志對方已經關閉了連接,因此這個時候就沒必要繼續監聽該套接口上的事件,由于EV_READ在on_accept函數里是用EV_PERSIST參數注冊的,因此要顯示的調用event_del函數取消對該事件的監聽。第18-21行與on_accept函數的6-11行類似,當可寫時調用on_write函數,注意第19行將buffer作為參數傳遞給了on_write。這段程序還有比較嚴重的問題,后面進行說明。
on_write函數的實現
1?void?on_write(int?sock,?short?event,?void*?arg) 2?{ 3?????char*?buffer?=?(char*)arg; 4???? send(sock, buffer, strlen(buffer),?0);? 5? 6???? free(buffer)
7?}
on_write函數中向客戶端回寫數據,然后釋放on_read函數中malloc出來的buffer。在很多書合編程指導中都很強調資源的所有權,經常要求誰分配資源、就由誰釋放資源,這樣對資源的管理指責就更明確,不容易出問題,但是通過該例子我們發現在異步編程中資源的分配與釋放往往是由不同的所有者操作的,因此也是比較容易出問題的地方。
其實在on_read函數中從socket讀取數據后程序就可以直接調用write/send接口向客戶回寫數據了,因為寫事件已經滿足,不存在異步不異步的問題,這里進行on_write的異步操作僅僅是為了說明異步編程中資源的管理與釋放的問題,另外一方面,直接調用write/send函數向客戶端寫數據可能導致程序較長時間阻塞在IO操作上,比如socket的輸出緩沖區已滿,則write/send操作阻塞到有可用的緩沖區之后才能進行實際的寫操作,而通過向寫事件注冊on_accept函數,那么libevent會在合適的時間調用我們的callback函數,(比如對于會引起IO阻塞的情況比如socket輸出緩沖區滿,則由libevent設計算法來處理,如此當回調on_accept函數時我們在調用IO操作就不會發生真正的IO之外的阻塞)。注:前面括號中是我個人認為一個庫應該實現的功能,至于libevent是不是實現這樣的功能并不清楚也無意深究。
再來看看前面提到的on_read函數中存在的問題,首先write_ev是動態分配的內存,但是沒有釋放,因此存在內存泄漏,另外,on_read中進行malloc操作,那么當多次調用該函數的時候就會造成內存的多次泄漏。這里的解決方法是對socket的描述字可以封裝一個結構體來保護讀、寫的事件以及數據緩沖區,整理后的完整代碼如下
#include?<sys/socket.h> #include?<sys/types.h> #include?<netinet/in.h> #include?<stdio.h> #include?<event.h> #define?PORT??????? 25341 #define?BACKLOG???? 5 #define?MEM_SIZE??? 1024 struct?event_base*?base; struct?sock_ev { ????struct?event*?read_ev; ????struct?event*?write_ev; ????char*?buffer; }; void?release_sock_event(struct?sock_ev*?ev) { ??? event_del(ev->read_ev); ??? free(ev->read_ev); ??? free(ev->write_ev); ??? free(ev->buffer); ??? free(ev); } void?on_write(int?sock,?short?event,?void*?arg) { ????char*?buffer?=?(char*)arg; ??? send(sock, buffer, strlen(buffer),?0); ??? free(buffer); } void?on_read(int?sock,?short?event,?void*?arg) { ????struct?event*?write_ev; ????int?size; ????struct?sock_ev*?ev?=?(struct?sock_ev*)arg; ??? ev->buffer?=?(char*)malloc(MEM_SIZE); ??? bzero(ev->buffer, MEM_SIZE); ??? size?=?recv(sock, ev->buffer, MEM_SIZE,?0); ??? printf("receive data:%s, size:%d\n", ev->buffer, size); ????if?(size?==?0) { ??????? release_sock_event(ev); ??????? close(sock); ????????return; ??? } ??? event_set(ev->write_ev, sock, EV_WRITE, on_write, ev->buffer); ??? event_base_set(base, ev->write_ev); ??? event_add(ev->write_ev, NULL); } void?on_accept(int?sock,?short?event,?void*?arg) { ????struct?sockaddr_in cli_addr; ????int?newfd, sin_size; ????struct?sock_ev*?ev?=?(struct?sock_ev*)malloc(sizeof(struct?sock_ev)); ??? ev->read_ev?=?(struct?event*)malloc(sizeof(struct?event)); ??? ev->write_ev?=?(struct?event*)malloc(sizeof(struct?event)); ??? sin_size?=?sizeof(struct?sockaddr_in); ??? newfd?=?accept(sock, (struct?sockaddr*)&cli_addr,?&sin_size); ??? event_set(ev->read_ev, newfd, EV_READ|EV_PERSIST, on_read, ev); ??? event_base_set(base, ev->read_ev); ??? event_add(ev->read_ev, NULL); } int?main(int?argc,?char*?argv[]) { ????struct?sockaddr_in my_addr; ????int?sock; ??? sock?=?socket(AF_INET, SOCK_STREAM,?0); ????int?yes?=?1; ??? setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,?&yes,?sizeof(int)); ??? memset(&my_addr,?0,?sizeof(my_addr)); ??? my_addr.sin_family?=?AF_INET; ??? my_addr.sin_port?=?htons(PORT); ??? my_addr.sin_addr.s_addr?=?INADDR_ANY; ??? bind(sock, (struct?sockaddr*)&my_addr,?sizeof(struct?sockaddr)); ??? listen(sock, BACKLOG); ????struct?event?listen_ev; ????base?=?event_base_new(); ??? event_set(&listen_ev, sock, EV_READ|EV_PERSIST, on_accept, NULL); ??? event_base_set(base,?&listen_ev); ??? event_add(&listen_ev, NULL); ??? event_base_dispatch(base); ????return?0
程序編譯的時候要加 -levent 連接選項,以連接libevent的共享庫,但是執行的時候依然爆出如下錯誤:error while loading shared libraries: libevent-1.4.so.2: cannot open shared object file: No such file or directory,?這個是程序找不到共享庫的位置,通過執行echo $LD_LIBRARY_PATH可以看到系統庫的環境變量里沒有我們安裝的路徑,即由--prefix制定的路徑,執行export LD_LIBRARY_PATH=/home/mydir/libevent/lib/:$LD_LIBRARY_PATH將該路徑加入系統環境變量里,再執行程序就可以了。

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/384315.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/384315.shtml
英文地址,請注明出處:http://en.pswp.cn/news/384315.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

計算機網絡(四)網絡層

計算機網絡&#xff08;四&#xff09;網絡層一、概述和功能TCP/IP協議棧IP數據報格式IP數據報分片二、ipv4網絡地址轉換&#xff08;NAT&#xff09;子網劃分子網掩碼ARP協議&#xff08;地址解析協議&#xff09;DHCP協議ICMP協議二、ipv6ipv4和ipv6的區別IPv6基本地址類型IP…

Linux下基于socket和多線程的聊天室小程序

轉載&#xff1a;http://blog.csdn.net/robot__man/article/details/52460733 要求&#xff1a;基于TCP編寫&#xff0c;一個聊天室最多100人。 客戶端&#xff1a;   1、用戶需要登錄&#xff0c;登錄時只需要輸入一個昵稱即可無需判斷昵稱是否重復&#xff08;如果其他功…

操作系統(一)計算機系統概述

操作系統&#xff08;一&#xff09;計算機系統概述一、操作系統的概念二、功能和目標資源的管理者向上層提供服務對硬件的擴展三、操作系統的特征并發共享虛擬異步四、操作系統的發展與分類手工操作階段批處理階段單道批處理系統多道批處理系統分時操作系統實時操作系統操作系…

Linux下使用socket傳輸文件的C語言簡單實現

轉載&#xff1a;http://blog.csdn.net/ljd_1986413/article/details/7940938 服務器程序和客戶端程序應當分別運行在兩臺計算機上。 在運行服務器端的計算機終端執行&#xff1a;./file_server 在運行客戶端的計算終端上執行&#xff1a;./file_client ipaddr_server 然后根…

操作系統(二)進程管理

ui 操作系統&#xff08;二&#xff09;進程管理一、進程程序和進程進程控制塊&#xff08;PCB&#xff09;進程的組成進程的特征進程的狀態與轉換進程狀態的轉換進程的組織鏈接方式索引方式進程的控制進程的創建進程的終止進程阻塞進程喚醒進程切換進程通信共享存儲消息傳遞管…

gethostbyname()函數說明

轉載&#xff1a;http://www.cnblogs.com/cxz2009/archive/2010/11/19/1881611.html gethostbyname()函數說明——用域名或主機名獲取IP地址 包含頭文件 #include <netdb.h> #include <sys/socket.h> 函數原型 struct hostent *gethostbyna…

操作系統(三)內存管理

操作系統&#xff08;三&#xff09;內存管理一、程序執行過程裝入的三種方式鏈接的三種方式二、內存管理的概念內存空間的分配與回收連續分配管理方式單一連續分配固定分區分配動態分區分配首次適應算法最佳適應算法最壞適應算法鄰近適應算法非連續分配管理方式基本分頁存儲管…

操作系統(四)文件管理

操作系統&#xff08;四&#xff09;文件管理一、文件系統基礎1.文件邏輯結構無結構文件有結構文件2.文件目錄文件控制塊&#xff08;FCB&#xff09;目錄結構單級目錄兩級目錄結構多級目錄結構無環圖目錄結構3.文件保護口令保護加密保護訪問控制4.文件共享硬鏈接軟鏈接5.文件系…

struct stat結構體簡介

轉載&#xff1a;http://www.cnblogs.com/CSU-PL/archive/2013/06/06/3120757.html 在使用這個結構體和方法時&#xff0c;需要引入&#xff1a; <sys/types.h> <sys/stat.h> struct stat這個結構體是用來描述一個linux系統文件系統中的文件屬性的結構。 可以有兩種…

如何在Ubuntu上安裝GCC編譯器

如何在Ubuntu上安裝GCC編譯器1.首先更新包列表sudo apt update2.安裝build-essential軟件包&#xff1a; sudo apt install build-essential3.驗證GCC編譯器是否已成功安裝&#xff0c;請使用gcc --version命令打印GCC版本 rootubuntu:/home/csd# gcc --version

操作系統(五)輸入/輸出(I/O)管理

操作系統&#xff08;五&#xff09;輸入/輸出&#xff08;I/O&#xff09;管理一、I/O控制器二、I/O控制方式程序直接控制方式中斷驅動方式DMA方式通道控制方式I/O軟件層次結構假脫機技術設備的分配與回收緩沖區單緩沖雙緩沖循環緩沖區緩沖池一、I/O控制器 I/O設備由機械部件…

Linux下的I/O多路復用select,poll,epoll淺析

轉載&#xff1a;http://blog.csdn.net/u011573853/article/details/52105365 一&#xff0c;什么是I/O多路復用 所謂的I/O多路復用在英文中其實叫 I/O multiplexing. 就是單個線程&#xff0c;通過記錄跟蹤每個I/O流(sock)的狀態&#xff0c;來同時管理多個I/O流 。) I/O mu…

計算機組成原理(一)計算機系統概述

計算機組成原理&#xff08;一&#xff09;計算機系統概述一、計算機系統層次結構馮諾伊曼機計算機工作過程多級層次結構一、計算機系統層次結構 馮諾伊曼機 特點&#xff1a; 計算機由五大部件組成指令和數據以同等地位存于存儲 器&#xff0c;可按地址尋訪指令和數據用二進…

計算機組成原理(二)數據的表示和運算

計算機組成原理&#xff08;二&#xff09;數據的表示和運算一、BCD碼二、奇偶校驗碼三、海明碼四、循環冗余校驗碼&#xff08;CRC&#xff09;五、乘法運算原碼乘法補碼乘法六、除法運算原碼除法補碼除法七、浮點數的表示與運算浮點數的運算一、BCD碼 組合式BCD碼&#xff1…

select read write

轉載&#xff1a;http://blog.csdn.net/beginning1126/article/details/8057498 [cpp] view plaincopy <p style"color: rgb(51, 51, 51); font-family: Arial; font-size: 14px; line-height: 26px; text-align: left; "><span style"font-size:14px;…

數據結構(七)圖的遍歷(遞歸非遞歸方法)

圖的遍歷&#xff08;遞歸非遞歸方法&#xff09;#include<iostream> #include<stdio.h> #include<stack> #include<queue> using namespace std;typedef char VertexType; typedef int EdgeType;#define MAXVEX 100 #define INF 65535 bool visited[M…

Linux IO復用區別與epoll詳解

轉載&#xff1a;http://blog.csdn.net/hacker00011000/article/details/52160590 一、select、poll、epoll之間的區別總結[整理]   select&#xff0c;poll&#xff0c;epoll都是IO多路復用的機制。I/O多路復用就通過一種機制&#xff0c;可以監視多個描述符&#xff0c;一…

簡單圖和多重圖

一、簡單圖 ?? ① 不存在重復邊&#xff1b; ?? ② 不存在頂點到自身的邊&#xff1b; 二、多重圖 ??① 某兩結點之間邊數多于一條&#xff1b; ??② 允許頂點通過一條邊和自己關聯&#xff1b;

C++筆記:select多路復用機制

轉載&#xff1a;http://blog.csdn.net/qdx411324962/article/details/42499535 函數作用&#xff1a; 系統提供select函數來實現多路復用輸入/輸出模型。select系統調用是用來讓我們的程序監視多個文件句柄的狀態變化的。程序會停在select這里等待&#xff0c;直到被監視的文件…

交叉編譯執行應用程序出現:No such file or directory

問題分析 當我在arm板子上執行交叉編譯過的程序的時候發現了這個錯誤。通過百度查詢基本都是缺少32位庫什么的,但是都不能解決問題。 然后我用ll指令&#xff0c;也排除了權限的原因。 我們用ldd指令發現&#xff0c;它不是動態執行的&#xff0c;雖然我們可以使用-static指…