http://www.cnblogs.com/venow/archive/2012/11/22/2779667.html
大多數的網絡服務器,包括Web服務器都具有一個特點,就是單位時間內必須處理數目巨大的連接請求,但是處理時間卻是比較短的。在傳統的多線程服務器模型中是這樣實現的:一旦有個請求到達,就創建一個新的線程,由該線程執行任務,任務執行完畢之后,線程就退出。這就是"即時創建,即時銷毀"的策略。盡管與創建進程相比,創建線程的時間已經大大的縮短,但是如果提交給線程的任務是執行時間較短,而且執行次數非常頻繁,那么服務器就將處于一個不停的創建線程和銷毀線程的狀態。這筆開銷是不可忽略的,尤其是線程執行的時間非常非常短的情況。
線程池就是為了解決上述問題的,它的實現原理是這樣的:在應用程序啟動之后,就馬上創建一定數量的線程,放入空閑的隊列中。這些線程都是處于阻塞狀態,這些線程只占一點內存,不占用CPU。當任務到來后,線程池將選擇一個空閑的線程,將任務傳入此線程中運行。當所有的線程都處在處理任務的時候,線程池將自動創建一定的數量的新線程,用于處理更多的任務。執行任務完成之后線程并不退出,而是繼續在線程池中等待下一次任務。當大部分線程處于阻塞狀態時,線程池將自動銷毀一部分的線程,回收系統資源。
下面是一個簡單線程池的實現,這個線程池的代碼是我參考網上的一個例子實現的,由于找不到出處了,就沒辦法注明參考自哪里了。它的方案是這樣的:程序啟動之前,初始化線程池,啟動線程池中的線程,由于還沒有任務到來,線程池中的所有線程都處在阻塞狀態,當一有任務到達就從線程池中取出一個空閑線程處理,如果所有的線程都處于工作狀態,就添加到隊列,進行排隊。如果隊列中的任務個數大于隊列的所能容納的最大數量,那就不能添加任務到隊列中,只能等待隊列不滿才能添加任務到隊列中。
主要由兩個文件組成一個threadpool.h頭文件和一個threadpool.c源文件組成。源碼中已有重要的注釋,就不加以分析了。
threadpool.h文件:
struct job {void* (*callback_function)(void *arg); //線程回調函數void *arg; //回調函數參數struct job *next; };struct threadpool {int thread_num; //線程池中開啟線程的個數int queue_max_num; //隊列中最大job的個數struct job *head; //指向job的頭指針struct job *tail; //指向job的尾指針pthread_t *pthreads; //線程池中所有線程的pthread_tpthread_mutex_t mutex; //互斥信號量pthread_cond_t queue_empty; //隊列為空的條件變量pthread_cond_t queue_not_empty; //隊列不為空的條件變量pthread_cond_t queue_not_full; //隊列不為滿的條件變量int queue_cur_num; //隊列當前的job個數int queue_close; //隊列是否已經關閉int pool_close; //線程池是否已經關閉 };//================================================================================================ //函數名: threadpool_init //函數描述: 初始化線程池 //輸入: [in] thread_num 線程池開啟的線程個數 // [in] queue_max_num 隊列的最大job個數 //輸出: 無 //返回: 成功:線程池地址 失敗:NULL //================================================================================================ struct threadpool* threadpool_init(int thread_num, int queue_max_num);//================================================================================================ //函數名: threadpool_add_job //函數描述: 向線程池中添加任務 //輸入: [in] pool 線程池地址 // [in] callback_function 回調函數 // [in] arg 回調函數參數 //輸出: 無 //返回: 成功:0 失敗:-1 //================================================================================================ int threadpool_add_job(struct threadpool *pool, void* (*callback_function)(void *arg), void *arg);//================================================================================================ //函數名: threadpool_destroy //函數描述: 銷毀線程池 //輸入: [in] pool 線程池地址 //輸出: 無 //返回: 成功:0 失敗:-1 //================================================================================================ int threadpool_destroy(struct threadpool *pool);//================================================================================================ //函數名: threadpool_function //函數描述: 線程池中線程函數 //輸入: [in] arg 線程池地址 //輸出: 無 //返回: 無 //================================================================================================ void* threadpool_function(void* arg);
threadpool.c文件:
#include "threadpool.h"struct threadpool* threadpool_init(int thread_num, int queue_max_num) {struct threadpool *pool = NULL;do {pool = malloc(sizeof(struct threadpool));if (NULL == pool){printf("failed to malloc threadpool!\n");break;}pool->thread_num = thread_num;pool->queue_max_num = queue_max_num;pool->queue_cur_num = 0;pool->head = NULL;pool->tail = NULL;if (pthread_mutex_init(&(pool->mutex), NULL)){printf("failed to init mutex!\n");break;}if (pthread_cond_init(&(pool->queue_empty), NULL)){printf("failed to init queue_empty!\n");break;}if (pthread_cond_init(&(pool->queue_not_empty), NULL)){printf("failed to init queue_not_empty!\n");break;}if (pthread_cond_init(&(pool->queue_not_full), NULL)){printf("failed to init queue_not_full!\n");break;}pool->pthreads = malloc(sizeof(pthread_t) * thread_num);if (NULL == pool->pthreads){printf("failed to malloc pthreads!\n");break;}pool->queue_close = 0;pool->pool_close = 0;int i;for (i = 0; i < pool->thread_num; ++i){pthread_create(&(pool->pthreads[i]), NULL, threadpool_function, (void *)pool);}return pool; } while (0);return NULL; }int threadpool_add_job(struct threadpool* pool, void* (*callback_function)(void *arg), void *arg) {assert(pool != NULL);assert(callback_function != NULL);assert(arg != NULL);pthread_mutex_lock(&(pool->mutex));while ((pool->queue_cur_num == pool->queue_max_num) && !(pool->queue_close || pool->pool_close)){pthread_cond_wait(&(pool->queue_not_full), &(pool->mutex)); //隊列滿的時候就等待 }if (pool->queue_close || pool->pool_close) //隊列關閉或者線程池關閉就退出 {pthread_mutex_unlock(&(pool->mutex));return -1;}struct job *pjob =(struct job*) malloc(sizeof(struct job));if (NULL == pjob){pthread_mutex_unlock(&(pool->mutex));return -1;} pjob->callback_function = callback_function; pjob->arg = arg;pjob->next = NULL;if (pool->head == NULL) {pool->head = pool->tail = pjob;pthread_cond_broadcast(&(pool->queue_not_empty)); //隊列空的時候,有任務來時就通知線程池中的線程:隊列非空 }else{pool->tail->next = pjob;pool->tail = pjob; }pool->queue_cur_num++;pthread_mutex_unlock(&(pool->mutex));return 0; }void* threadpool_function(void* arg) {struct threadpool *pool = (struct threadpool*)arg;struct job *pjob = NULL;while (1) //死循環 {pthread_mutex_lock(&(pool->mutex));while ((pool->queue_cur_num == 0) && !pool->pool_close) //隊列為空時,就等待隊列非空 {pthread_cond_wait(&(pool->queue_not_empty), &(pool->mutex));}if (pool->pool_close) //線程池關閉,線程就退出 {pthread_mutex_unlock(&(pool->mutex));pthread_exit(NULL);}pool->queue_cur_num--;pjob = pool->head;if (pool->queue_cur_num == 0){pool->head = pool->tail = NULL;}else {pool->head = pjob->next;}if (pool->queue_cur_num == 0){pthread_cond_signal(&(pool->queue_empty)); //隊列為空,就可以通知threadpool_destroy函數,銷毀線程函數 }if (pool->queue_cur_num == pool->queue_max_num - 1){pthread_cond_broadcast(&(pool->queue_not_full)); //隊列非滿,就可以通知threadpool_add_job函數,添加新任務 }pthread_mutex_unlock(&(pool->mutex));(*(pjob->callback_function))(pjob->arg); //線程真正要做的工作,回調函數的調用 free(pjob);pjob = NULL; } } int threadpool_destroy(struct threadpool *pool) {assert(pool != NULL);pthread_mutex_lock(&(pool->mutex));if (pool->queue_close || pool->pool_close) //線程池已經退出了,就直接返回 {pthread_mutex_unlock(&(pool->mutex));return -1;}pool->queue_close = 1; //置隊列關閉標志while (pool->queue_cur_num != 0){pthread_cond_wait(&(pool->queue_empty), &(pool->mutex)); //等待隊列為空 } pool->pool_close = 1; //置線程池關閉標志pthread_mutex_unlock(&(pool->mutex));pthread_cond_broadcast(&(pool->queue_not_empty)); //喚醒線程池中正在阻塞的線程pthread_cond_broadcast(&(pool->queue_not_full)); //喚醒添加任務的threadpool_add_job函數int i;for (i = 0; i < pool->thread_num; ++i){pthread_join(pool->pthreads[i], NULL); //等待線程池的所有線程執行完畢 }pthread_mutex_destroy(&(pool->mutex)); //清理資源pthread_cond_destroy(&(pool->queue_empty));pthread_cond_destroy(&(pool->queue_not_empty)); pthread_cond_destroy(&(pool->queue_not_full)); free(pool->pthreads);struct job *p;while (pool->head != NULL){p = pool->head;pool->head = p->next;free(p);}free(pool);return 0; }
測試文件main.c文件:
#include "threadpool.h"void* work(void* arg) {char *p = (char*) arg;printf("threadpool callback fuction : %s.\n", p);sleep(1); }int main(void) {struct threadpool *pool = threadpool_init(10, 20);threadpool_add_job(pool, work, "1");threadpool_add_job(pool, work, "2");threadpool_add_job(pool, work, "3");threadpool_add_job(pool, work, "4");threadpool_add_job(pool, work, "5");threadpool_add_job(pool, work, "6");threadpool_add_job(pool, work, "7");threadpool_add_job(pool, work, "8");threadpool_add_job(pool, work, "9");threadpool_add_job(pool, work, "10");threadpool_add_job(pool, work, "11");threadpool_add_job(pool, work, "12");threadpool_add_job(pool, work, "13");threadpool_add_job(pool, work, "14");threadpool_add_job(pool, work, "15");threadpool_add_job(pool, work, "16");threadpool_add_job(pool, work, "17");threadpool_add_job(pool, work, "18");threadpool_add_job(pool, work, "19");threadpool_add_job(pool, work, "20");threadpool_add_job(pool, work, "21");threadpool_add_job(pool, work, "22");threadpool_add_job(pool, work, "23");threadpool_add_job(pool, work, "24");threadpool_add_job(pool, work, "25");threadpool_add_job(pool, work, "26");threadpool_add_job(pool, work, "27");threadpool_add_job(pool, work, "28");threadpool_add_job(pool, work, "29");threadpool_add_job(pool, work, "30");threadpool_add_job(pool, work, "31");threadpool_add_job(pool, work, "32");threadpool_add_job(pool, work, "33");threadpool_add_job(pool, work, "34");threadpool_add_job(pool, work, "35");threadpool_add_job(pool, work, "36");threadpool_add_job(pool, work, "37");threadpool_add_job(pool, work, "38");threadpool_add_job(pool, work, "39");threadpool_add_job(pool, work, "40");sleep(5);threadpool_destroy(pool);return 0; }
用gcc編譯,運行就可以看到效果,1到40個回調函數分別被執行。