💥💥💞💞歡迎來到本博客????💥💥
🏆博主優勢:🌞🌞🌞博客內容盡量做到思維縝密,邏輯清晰,為了方便讀者。
??座右銘:行百里者,半于九十。
📋📋📋本文目錄如下:🎁🎁🎁
目錄
💥1 概述
📚2 運行結果
🎉3?參考文獻
🌈4 Matlab代碼實現
💥1 概述
空間匹配濾波器(Spatial Matched Filter)是一種用于信號處理的濾波器。它的原理是通過將輸入信號與預先存儲的參考信號進行相關運算,從而增強目標信號并抑制噪聲。空間匹配濾波器在雷達、聲納等領域廣泛應用,用于目標檢測、目標跟蹤等任務。
錐形最佳波束成形器(Conical Beamformer)是一種用于信號處理的波束成形器。它通過調整傳感器陣列中各個傳感器的權重,使得陣列對特定方向的信號響應最大化,從而實現對目標信號的增強。錐形最佳波束成形器在無線通信、聲納等領域常用于信號接收和目標定位。
非錐形最佳波束成形器(Non-Conical Beamformer)是一種波束成形器的變種。與錐形最佳波束成形器不同的是,非錐形最佳波束成形器可以實現對多個目標信號的增強,而不僅僅是單個方向的信號。非錐形最佳波束成形器在多目標檢測和定位等任務中具有重要應用。
樣本矩陣反演(Sample Matrix Inversion)是一種用于信號處理的方法。它通過對接收到的信號進行采樣和矩陣運算,估計信號源的位置和強度。樣本矩陣反演在無線通信、雷達等領域常用于信號定位和信號源分離。
以上這些方法在陣列信號處理中都有廣泛的研究和應用,它們可以提高信號的質量和可靠性,從而提升系統性能。
📚2 運行結果
?
?
?
?
?
?
?
?
?
?部分代碼:
% We illustrate the use of tapers with the spatial matched filter for the extraction
% of a radar signal in the presence of a jamming interference source using a ULA with M = 20
% elements with $\lambda/2$ spacing. The desired radar signal is known as a target and is?
% present for only one sample in time. Here the target signal is at time sample (range gate)
% n = 100 and is at $\phi_s = 0^{\circ}$ with an array SNR of 20 dB. The jammer transmits a?
% high-power, uncorrelated waveform (white noise). The angle of the jammer is $\phi_i = 20^{\circ}$
% and its strength is 40 dB. The additive, sensor thermal noise has unit power (0 dB).
%
% Copyright 2016 - 2026, Ilias S. Konsoulas.
%% Workspace Initialization.
clc; clear; close all;
%% Signal Definitions.
M ? ? ?= 20; ? ? ? % Number of Array Elements.
N ? ? ?= 200; ? ? ?% Number of Signal Samples.
n ? ? ?= 1:N; ? ? ?% Sample Index Vector.
lambda = 1; ? ? ? ?% Incoming Signal Wavelength in (m).
d ? ? ?= lambda/2; % Interelement Distance in (m).
SNR ? ?= 20; ? ? ? % target volatege signal array SNR in dBs.
INR ? ?= 40; ? ? ? % interference array SNR in dBs.
phi_s ?= 0; ? ? ? ?% target azimuth angle in degrees.
phi_i ?= 20; ? ? ? % interference azimuth angle in degrees.
u_s ?= (d/lambda)*sin(phi_s*pi/180); % Target Normalized Spatial Frequency.
u_si = (d/lambda)*sin(phi_i*pi/180); % Jammer Normalized Spatial Frequency.
s = zeros(M,N);
s(:,100) = 10^(SNR/20)*exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M);
% Uncorrelated unit power thermal noise samples drawn from a complex Gaussian distribution
w = (randn(M,N)+1i*randn(M,N))/sqrt(2);
% The interference (jammer) vector is generated by:
% v_i = exp(-1i*pi*[0:M-1]'*sin(phi_i*pi/180))/sqrt(M); mentioned in the book is wrong.
v_i = exp(-1i*2*pi*u_si*(0:M-1).')/sqrt(M);
i_x = 10^(INR/20)*v_i*(randn(1,N)+1i*randn(1,N))/sqrt(2);
%The three signals are added to produce the overall array signal
x = s + i_x + w;
% Two beamformers (steered to phi = 0.) are applied to the resulting array returns: a spatial matched
% filter and a tapered beamformer with a -50-dB sidelobe level. The resulting beamformer output
% signals are shown in Figure 11.15. The spatial matched filter is unable to reduce the jammer
% sufficiently to observe the target signal at n = 100. However, the tapered beamformer is able
% to attenuate the jammer signal below the thermal noise level and the target is easily extracted.
% The target signal is approximately 18.5 dB with the -1.5 dB loss due to the tapering loss in (11.2.24).
%% Spatial Matched Filter or Steering Vector Beamformer.
c_mf = exp(-1i*2*pi*u_s*(0:M-1).')/sqrt(M); ??
% Spatial Dolph-Chebychev Window of length M = 20 with -50 dB sidelobe attenuation:
w = chebwin(M,50);
% Compute the Combined Taper by taking the Hadamard product:
c_mft = c_mf.*w;
% Normalize the combined taper vector:
🎉3?參考文獻
部分理論來源于網絡,如有侵權請聯系刪除。
[1]羅日成,李衛國,李成榕.基于陣列信號處理的變壓器內局部放電源多目標定位方法[J].電網技術, 2006, 30(1):5.DOI:10.3321/j.issn:1000-3673.2006.01.013.
[2]張小飛,汪飛,徐大專.陣列信號處理的理論和應用[M].國防工業出版社,2010.
[3]羅景青,保錚.雷達陣列信號處理技術的新發現(一)[J].現代雷達, 1993, 15(2):11.DOI:CNKI:SUN:XDLD.0.1993-02-015.
[4]馬友科,宋萬杰,吳順君,等.基于多DSP的雷達陣列信號處理系統[J].雷達科學與技術, 2009, 7(2):4.DOI:10.3969/j.issn.1672-2337.2009.02.008.