一、波動方程的PINN解法:
Guo Y, Cao X, Liu B, et al. Solving partial differential equations using deep learning and physical constraints[J]. Applied Sciences, 2020, 10(17): 5917.
二、二維的Navier–Stokes方程組的PINN解法
矢量形式的不可壓縮Navier-Stokes方程:
Chuang P Y, Barba L A. Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration[J]. arXiv preprint arXiv:2205.14249, 2022.
二維的Navier–Stokes方程組的PINN解法:
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686-707.
三、秒速求解PDE!26種神經網絡偏微分方程求解方法分享,涉及CNN、PINN等
基于神經網絡的偏微分方程求解方法26篇論文
1.數據驅動下的偏微分方程神經網絡求解方法
基于 CNN 的求解方法
Learning PDEs from data with a numeric-symbolic hybrid deep network
https://arxiv.org/pdf/1812.04426v2.pdf