度熊面前有一個全是由1構成的字符串,被稱為全1序列。你可以合并任意相鄰的兩個1,從而形成一個新的序列。對于給定的一個全1序列,請計算根據以上方法,可以構成多少種不同的序列。
Input
這里包括多組測試數據,每組測試數據包含一個正整數NN,代表全1序列的長度。?
1≤N≤2001≤N≤200
Output
對于每組測試數據,輸出一個整數,代表由題目中所給定的全1序列所能形成的新序列的數量。
Sample Input
1 3 5
Sample Output
1 3 8
Hint
如果序列是:(111)。可以構造出如下三個新序列:(111), (21), (12)。
代碼:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<set>using namespace std;//compare比較函數:相等返回0,大于返回1,小于返回-1
int compare(string str1,string str2)
{if(str1.length()>str2.length()) return 1;else if(str1.length()<str2.length()) return -1;else return str1.compare(str2);
}
//高精度加法
//只能是兩個正數相加
string add(string str1,string str2)//高精度加法
{string str;int len1=str1.length();int len2=str2.length();//前面補0,弄成長度相同if(len1<len2){for(int i=1;i<=len2-len1;i++)str1="0"+str1;}else{for(int i=1;i<=len1-len2;i++)str2="0"+str2;}len1=str1.length();int cf=0;int temp;for(int i=len1-1;i>=0;i--){temp=str1[i]-'0'+str2[i]-'0'+cf;cf=temp/10;temp%=10;str=char(temp+'0')+str;}if(cf!=0) str=char(cf+'0')+str;return str;
}
//高精度減法
//只能是兩個正數相減,而且要大減小
string sub(string str1,string str2)//高精度減法
{string str;int tmp=str1.length()-str2.length();int cf=0;for(int i=str2.length()-1;i>=0;i--){if(str1[tmp+i]<str2[i]+cf){str=char(str1[tmp+i]-str2[i]-cf+'0'+10)+str;cf=1;}else{str=char(str1[tmp+i]-str2[i]-cf+'0')+str;cf=0;}}for(int i=tmp-1;i>=0;i--){if(str1[i]-cf>='0'){str=char(str1[i]-cf)+str;cf=0;}else{str=char(str1[i]-cf+10)+str;cf=1;}}str.erase(0,str.find_first_not_of('0'));//去除結果中多余的前導0return str;
}
//高精度乘法
//只能是兩個正數相乘
string mul(string str1,string str2)
{string str;int len1=str1.length();int len2=str2.length();string tempstr;for(int i=len2-1;i>=0;i--){tempstr="";int temp=str2[i]-'0';int t=0;int cf=0;if(temp!=0){for(int j=1;j<=len2-1-i;j++)tempstr+="0";for(int j=len1-1;j>=0;j--){t=(temp*(str1[j]-'0')+cf)%10;cf=(temp*(str1[j]-'0')+cf)/10;tempstr=char(t+'0')+tempstr;}if(cf!=0) tempstr=char(cf+'0')+tempstr;}str=add(str,tempstr);}str.erase(0,str.find_first_not_of('0'));return str;
}//高精度除法
//兩個正數相除,商為quotient,余數為residue
//需要高精度減法和乘法
void div(string str1,string str2,string "ient,string &residue)
{quotient=residue="";//清空if(str2=="0")//判斷除數是否為0{quotient=residue="ERROR";return;}if(str1=="0")//判斷被除數是否為0{quotient=residue="0";return;}int res=compare(str1,str2);if(res<0){quotient="0";residue=str1;return;}else if(res==0){quotient="1";residue="0";return;}else{int len1=str1.length();int len2=str2.length();string tempstr;tempstr.append(str1,0,len2-1);for(int i=len2-1;i<len1;i++){tempstr=tempstr+str1[i];tempstr.erase(0,tempstr.find_first_not_of('0'));if(tempstr.empty())tempstr="0";for(char ch='9';ch>='0';ch--)//試商{string str,tmp;str=str+ch;tmp=mul(str2,str);if(compare(tmp,tempstr)<=0)//試商成功{quotient=quotient+ch;tempstr=sub(tempstr,tmp);break;}}}residue=tempstr;}quotient.erase(0,quotient.find_first_not_of('0'));if(quotient.empty()) quotient="0";
}
string c[205];
void init()
{c[1]="1";c[2]="2"; for(int i=3;i<=200;i++){c[i]=add(c[i-1],c[i-2]);}
}
int main()
{init();/*string str1,str2;string str3,str4;while(cin>>str1>>str2){cout<<add(str1,str2)<<endl;cout<<sub(str1,str2)<<endl;cout<<mul(str1,str2)<<endl;div(str1,str2,str3,str4);cout<<str3<<" "<<str4<<endl;}*/int n;while(cin>>n){cout<<c[n]<<endl;}return 0;
}
?