前言
《深度學習之模型壓縮三駕馬車:基于ResNet18的模型剪枝實戰(1)》里面我只是提到了對conv1
層進行剪枝,只是為了驗證這個剪枝的整個過程,但是后面也有提到:僅裁剪 conv1
層的影響極大,原因如下:
- 底層特征的重要性 :
conv1
輸出的是最基礎的圖像特征,所有后續層的特征均基于此生成。裁剪 conv1 會直接限制后續所有層的特征表達能力。 - 結構連鎖反應 :
conv1
的輸出通道減少會觸發bn1
、layer1.0.conv1
、downsample
等多個模塊的調整,任何一個模塊的調整失誤(如通道數不匹配、參數初始化不當)都會導致整體性能下降。
雖然,在例子中,我們只是簡單的進行了驗證,發現效果也不是很差,但是如果具體到自己的數據,或者更加復雜的特征或者模型,可能就會影響到了整體的性能,因此,我們在原有的基礎上做了如下的改動:
- 剪枝目標層調整 :將 conv1 改為 layer2.0.conv1 ,減少對底層特征的破壞。
- 通道評估優化 :通過前向傳播收集激活值,優先剪枝激活值低的通道,更符合實際特征貢獻。
- 微調策略改進 :動態解凍剪枝層及關聯的BN、downsample層,學習率降低(0.0001),微調輪次增加(10輪),確保參數充分適應。
這些修改可顯著提升剪枝后模型的穩定性和準確率。建議運行時觀察微調階段的Loss是否持續下降,若下降緩慢可進一步降低學習率(如0.00001)。
所有代碼都在這:https://gitee.com/NOON47/model_prune
詳細改動
- 剪枝目標層調整 :將 conv1 改為 layer2.0.conv1 ,減少對底層特征的破壞。
layer_to_prune = 'layer2.0.conv1' # 顯式定義要剪枝的層名pruned_model = prune_conv_layer(model, layer_to_prune, amount=0.2)
- 通道評估優化 :通過前向傳播收集激活值,優先剪枝激活值低的通道,更符合實際特征貢獻。
model.eval()with torch.no_grad():test_input = torch.randn(128, 3, 32, 32).to(device) # 模擬 CIFAR10 輸入features = []def hook_fn(module, input, output):features.append(output)handle = layer.register_forward_hook(hook_fn)model(test_input)handle.remove()activation = features[0] # shape: [128, out_channels, H, W]channel_importance = activation.mean(dim=(0, 2, 3)) # 按通道求平均激活值num_channels = weight.shape[0]num_prune = int(num_channels * amount)_, indices = torch.topk(channel_importance, k=num_prune, largest=False)mask = torch.ones(num_channels, dtype=torch.bool)mask[indices] = False # 生成剪枝掩碼
- 微調策略改進 :動態解凍剪枝層及關聯的BN、downsample層,學習率降低(0.0001),微調輪次增加(10輪),確保參數充分適應。
print("開始微調剪枝后的模型")# 新增:根據剪枝層動態解凍相關層(假設剪枝層為layer2.0.conv1)pruned_layer_prefix = layer_to_prune.rpartition('.')[0] # 例如 'layer2.0'for name, param in pruned_model.named_parameters():if (pruned_layer_prefix in name) or ('fc' in name) or ('bn' in name): # 解凍剪枝層、BN層和fc層param.requires_grad = Trueelse:param.requires_grad = Falseoptimizer = optim.Adam(filter(lambda p: p.requires_grad, pruned_model.parameters()), lr=0.0001) # 微調學習率降低pruned_model = train_model(pruned_model, train_loader, criterion, optimizer, device, epochs=10) # 增加微調輪次
完整的裁剪函數:
def prune_conv_layer(model, layer_name, amount=0.2):device = next(model.parameters()).devicelayer = dict(model.named_modules())[layer_name]weight = layer.weight.data# 基于激活值的通道重要性評估model.eval()with torch.no_grad():test_input = torch.randn(128, 3, 32, 32).to(device) # 模擬 CIFAR10 輸入features = []def hook_fn(module, input, output):features.append(output)handle = layer.register_forward_hook(hook_fn)model(test_input)handle.remove()activation = features[0] # shape: [128, out_channels, H, W]channel_importance = activation.mean(dim=(0, 2, 3)) # 按通道求平均激活值num_channels = weight.shape[0]num_prune = int(num_channels * amount)_, indices = torch.topk(channel_importance, k=num_prune, largest=False)mask = torch.ones(num_channels, dtype=torch.bool)mask[indices] = False # 生成剪枝掩碼# 創建并替換新卷積層new_conv = nn.Conv2d(in_channels=layer.in_channels,out_channels=num_channels - num_prune,kernel_size=layer.kernel_size,stride=layer.stride,padding=layer.padding,bias=layer.bias is not None).to(device)new_conv.weight.data = layer.weight.data[mask] # 應用掩碼剪枝權重if layer.bias is not None:new_conv.bias.data = layer.bias.data[mask]# 替換原始卷積層parent_name, sep, name = layer_name.rpartition('.')parent = model.get_submodule(parent_name)setattr(parent, name, new_conv)# 僅處理首層 conv1 的特殊邏輯if layer_name == 'conv1':# 更新首層 BN 層(bn1)bn1 = model.bn1new_bn1 = nn.BatchNorm2d(new_conv.out_channels).to(device)with torch.no_grad():new_bn1.weight.data = bn1.weight.data[mask].clone()new_bn1.bias.data = bn1.bias.data[mask].clone()new_bn1.running_mean.data = bn1.running_mean.data[mask].clone()new_bn1.running_var.data = bn1.running_var.data[mask].clone()model.bn1 = new_bn1# 處理 layer1.0 的 downsample 層(若不存在則創建)block = model.layer1[0]if not hasattr(block, 'downsample') or block.downsample is None:# 創建 1x1 卷積 + BN 用于通道匹配downsample_conv = nn.Conv2d(in_channels=new_conv.out_channels,out_channels=block.conv2.out_channels, # 與主路徑輸出通道一致(ResNet18 為 64)kernel_size=1,stride=1,bias=False).to(device)# 初始化權重(使用原卷積層的統計量)with torch.no_grad():downsample_conv.weight.data = layer.weight.data.mean(dim=(2,3), keepdim=True) # 原卷積核均值初始化downsample_bn = nn.BatchNorm2d(downsample_conv.out_channels).to(device)with torch.no_grad():downsample_bn.weight.data.fill_(1.0)downsample_bn.bias.data.zero_()downsample_bn.running_mean.data.zero_()downsample_bn.running_var.data.fill_(1.0)block.downsample = nn.Sequential(downsample_conv, downsample_bn)print("? 為 layer1.0 添加新的 downsample 層")else:# 調整已有 downsample 層的輸入通道downsample_conv = block.downsample[0]downsample_conv.in_channels = new_conv.out_channelsdownsample_conv.weight = nn.Parameter(downsample_conv.weight.data[:, mask, :, :].clone()).to(device)# 更新對應的 BN 層downsample_bn = block.downsample[1]new_downsample_bn = nn.BatchNorm2d(downsample_conv.out_channels).to(device)with torch.no_grad():new_downsample_bn.weight.data = downsample_bn.weight.data.clone()new_downsample_bn.bias.data = downsample_bn.bias.data.clone()new_downsample_bn.running_mean.data = downsample_bn.running_mean.data.clone()new_downsample_bn.running_var.data = downsample_bn.running_var.data.clone()block.downsample[1] = new_downsample_bn# 同步 layer1.0.conv1 的輸入通道target_conv = model.layer1[0].conv1if target_conv.in_channels != new_conv.out_channels:print(f"同步 layer1.0.conv1 輸入通道: {target_conv.in_channels} → {new_conv.out_channels}")target_conv.in_channels = new_conv.out_channelstarget_conv.weight = nn.Parameter(target_conv.weight.data[:, mask, :, :].clone()).to(device)else:# 中間層剪枝邏輯(如 layer2.0.conv1)block_prefix = layer_name.rsplit('.', 1)[0] # 提取 block 前綴(如 'layer2.0')block = model.get_submodule(block_prefix) # 獲取對應的 block(如 layer2.0)# 更新當前 block 內的 BN 層(conv1 對應 bn1,conv2 對應 bn2)target_bn_name = f"{block_prefix}.bn1" if 'conv1' in layer_name else f"{block_prefix}.bn2"try:target_bn = model.get_submodule(target_bn_name)new_bn = nn.BatchNorm2d(new_conv.out_channels).to(device)with torch.no_grad():new_bn.weight.data = target_bn.weight.data[mask].clone()new_bn.bias.data = target_bn.bias.data[mask].clone()new_bn.running_mean.data = target_bn.running_mean.data[mask].clone()new_bn.running_var.data = target_bn.running_var.data[mask].clone()setattr(block, target_bn_name.split('.')[-1], new_bn) # 替換原 BN 層print(f"? 更新剪枝層 {layer_name} 對應的 BN 層 {target_bn_name}")except AttributeError:print(f"?? 未找到剪枝層 {layer_name} 對應的 BN 層,跳過 BN 更新")# 新增:同步后續卷積層的輸入通道(如 conv1 后調整 conv2)if 'conv1' in layer_name:next_conv = block.conv2if next_conv.in_channels != new_conv.out_channels:print(f"同步 {block_prefix}.conv2 輸入通道: {next_conv.in_channels} → {new_conv.out_channels}")next_conv.in_channels = new_conv.out_channelsnext_conv.weight = nn.Parameter(next_conv.weight.data[:, mask, :, :].clone()).to(device) # 按剪枝掩碼篩選輸入通道權重# 可選:如果存在 downsample 層,調整其輸入通道(根據實際需求啟用)# if hasattr(block, 'downsample') and block.downsample is not None:# downsample_conv = block.downsample[0]# downsample_conv.in_channels = new_conv.out_channels# downsample_conv.weight = nn.Parameter(downsample_conv.weight.data[:, mask, :, :].clone()).to(device)# print(f"? 調整剪枝層 {layer_name} 關聯的 downsample 層輸入通道")# 驗證前向傳播with torch.no_grad():test_input = torch.randn(1, 3, 32, 32).to(device)try:model(test_input)print("? 前向傳播驗證通過")except Exception as e:print(f"? 驗證失敗: {str(e)}")raisereturn model
改動后結果
經過改動后, 增加微調輪次,得到的結果如下:
剪枝前模型大小信息:
==========================================================================================
Total params: 11,181,642
Trainable params: 11,181,642
Non-trainable params: 0
Total mult-adds (M): 37.03
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.81
Params size (MB): 44.73
Estimated Total Size (MB): 45.55
==========================================================================================
原始模型準確率: 81.42%剪枝后模型大小信息:
==========================================================================================
Total params: 11,138,392
Trainable params: 11,138,392
Non-trainable params: 0
Total mult-adds (M): 36.33
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.80
Params size (MB): 44.55
Estimated Total Size (MB): 45.37
==========================================================================================
剪枝后模型準確率: 83.28%
個人認為,這個才是比較符合實際應用的。