第19題第3問: b b b 使得存在 t t t, 對于任意的 x x x, 5 cos ? x ? cos ? ( 5 x + t ) < b 5\cos x-\cos(5x+t)<b 5cosx?cos(5x+t)<b, 求 b b b 的最小值.
解:
b b b 的最小值 b m i n = min ? t max ? x g ( x , t ) b_{min}=\min_{t} \max_{x} g(x,t) bmin?=mint?maxx?g(x,t), 其中 g ( x , t ) = 5 cos ? x ? cos ? ( 5 x + t ) g(x,t)=5\cos x-\cos (5x+t) g(x,t)=5cosx?cos(5x+t).
下面先求解 max ? x g ( x , t ) \max_{x} g(x,t) maxx?g(x,t).
構造關于變元 x x x 的輔助函數 h ( x ) = g ( x , t ) h(x)=g(x,t) h(x)=g(x,t).
則 max ? x g ( x , t ) = max ? x h ( x ) \max_{x} g(x,t)=\max_{x} h(x) maxx?g(x,t)=maxx?h(x).
h ′ ( x ) = ? 5 sin ? x + 5 sin ? ( 5 x + t ) h'(x)=-5\sin x+5\sin (5x+t) h′(x)=?5sinx+5sin(5x+t).
求解以下方程得到極值點:
2 k π + x = 5 x + t 2k\pi+x=5x+t 2kπ+x=5x+t, k ∈ Z k\in \mathbb{Z} k∈Z.
x = 2 k π ? t 4 x=\frac{2k\pi-t}{4} x=42kπ?t?.
( 2 k + 1 ) π ? x = 5 x + t (2k+1)\pi-x=5x+t (2k+1)π?x=5x+t.
x = ( 2 k + 1 ) π ? t 6 x=\frac{(2k+1)\pi-t}{6} x=6(2k+1)π?t?.
顯然 h ( x ) h(x) h(x) 的圖像以 2 π 2\pi 2π 為周期, 且滿足性質 h ( x ) = ? h ( x + π ) h(x)=-h(x+\pi) h(x)=?h(x+π), 所以它的每個極大值的相反數必然是極小值, 反之亦然. 對負的極值取相反數就得到一個正的極值. 由此得到:
max ? x h ( x ) = max ? { max ? k ∣ 5 cos ? ( k π 2 ? t 4 ) ? cos ? ( 5 k π 2 ? t 4 ) ∣ , max ? k ∣ 5 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) ? cos ? ( ( 10 k + 5 ) π 6 + t 6 ) ∣ } \max_{x} h(x)=\max \{\max_{k}|5 \cos (\frac{k\pi}{2}-\frac{t}{4}) - \cos (\frac{5k\pi}{2}-\frac{t}{4})|, \max_{k} |5 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) - \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6})|\} maxx?h(x)=max{maxk?∣5cos(2kπ??4t?)?cos(25kπ??4t?)∣,maxk?∣5cos(6(2k+1)π??6t?)?cos(6(10k+5)π?+6t?)∣}
其中:
5 cos ? ( k π 2 ? t 4 ) ? cos ? ( 5 k π 2 ? t 4 ) = 4 cos ? ( k π 2 ? t 4 ) 5 \cos (\frac{k\pi}{2}-\frac{t}{4})- \cos (\frac{5k\pi}{2}-\frac{t}{4}) =4 \cos (\frac{k\pi}{2}-\frac{t}{4}) 5cos(2kπ??4t?)?cos(25kπ??4t?)=4cos(2kπ??4t?),
cos ? ( ( 10 k + 5 ) π 6 + t 6 ) = cos ? ( ( ? 10 k ? 5 ) π 6 ? t 6 ) = ? cos ? ( ( ? 10 k ? 5 ) π 6 ? t 6 + ( 2 k + 1 ) π ) = ? cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6}) = \cos (\frac{(-10k-5)\pi}{6}-\frac{t}{6})=-\cos (\frac{(-10k-5)\pi}{6}-\frac{t}{6}+(2k+1)\pi)=-\cos(\frac{(2k+1)\pi}{6}-\frac{t}{6}) cos(6(10k+5)π?+6t?)=cos(6(?10k?5)π??6t?)=?cos(6(?10k?5)π??6t?+(2k+1)π)=?cos(6(2k+1)π??6t?).
5 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) ? cos ? ( ( 10 k + 5 ) π 6 + t 6 ) = 6 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) 5 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) - \cos (\frac{(10k+5)\pi}{6}+\frac{t}{6})=6\cos (\frac{(2k+1)\pi}{6} - \frac{t}{6}) 5cos(6(2k+1)π??6t?)?cos(6(10k+5)π?+6t?)=6cos(6(2k+1)π??6t?).
所以 max ? x g ( x , t ) = max ? x h ( x ) = max ? { max ? k ∣ 4 cos ? ( k π 2 ? t 4 ) ∣ , max ? k ∣ 6 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) ∣ } \max_{x}g(x,t)=\max_{x} h(x)=\max \{\max_{k}|4 \cos (\frac{k\pi}{2}-\frac{t}{4}) |, \max_{k} |6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|\} maxx?g(x,t)=maxx?h(x)=max{maxk?∣4cos(2kπ??4t?)∣,maxk?∣6cos(6(2k+1)π??6t?)∣}.
下面求解: max ? t max ? x g ( x , t ) \max_{t} \max_{x}g(x,t) maxt?maxx?g(x,t).
其中:
max ? k ∣ 6 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) ∣ = max ? k = ? 1 , 0 , 1 ∣ 6 cos ? ( ( 2 k + 1 ) π 6 ? t 6 ) ∣ = 6 max ? { ∣ cos ? ? π ? t 6 ∣ , ∣ cos ? π ? t 6 ∣ , ∣ cos ? 3 π ? t 6 ∣ } \max_{k} |6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|=\max_{k=-1,0,1}|6 \cos (\frac{(2k+1)\pi}{6} - \frac{t}{6})|=6\max\{|\cos\frac{-\pi-t}{6}|, |\cos\frac{\pi-t}{6}|, |\cos\frac{3\pi-t}{6}|\} maxk?∣6cos(6(2k+1)π??6t?)∣=maxk=?1,0,1?∣6cos(6(2k+1)π??6t?)∣=6max{∣cos6?π?t?∣,∣cos6π?t?∣,∣cos63π?t?∣}.
構造關于變元 x x x 的輔助函數 g ( x ) = max ? { ∣ cos ? ( x ? π 3 ) ∣ , ∣ cos ? x ∣ , ∣ cos ? ( x + π 3 ) ∣ } g(x)=\max\{|\cos (x-\frac{\pi}{3})|, |\cos x|, |\cos (x+\frac{\pi}{3})|\} g(x)=max{∣cos(x?3π?)∣,∣cosx∣,∣cos(x+3π?)∣}, 結合圖像可知 g ( x ) ≥ 3 2 g(x)\geq \frac{\sqrt{3}}{2} g(x)≥23??, 當 x = π 6 x=\frac{\pi}{6} x=6π? 時等號成立.
所以 max ? { ∣ cos ? π ? t 6 ∣ , ∣ cos ? 3 π ? t 6 ∣ } ≤ 3 2 \max\{|\cos\frac{\pi-t}{6}|, |\cos\frac{3\pi-t}{6}|\} \leq \frac{\sqrt{3}}{2} max{∣cos6π?t?∣,∣cos63π?t?∣}≤23??, 當 π ? t 6 = π 6 \frac{\pi-t}{6}=\frac{\pi}{6} 6π?t?=6π?, 即 t = 0 t=0 t=0 時等號成立.
∣ 4 cos ? ( k π 2 ? t 4 ) ∣ ≤ 4 < 3 3 |4 \cos (\frac{k\pi}{2}-\frac{t}{4})|\leq 4<3\sqrt{3} ∣4cos(2kπ??4t?)∣≤4<33?.
綜上, max ? t max ? x g ( x , t ) = 3 3 \max_{t} \max_{x}g(x,t)=3\sqrt{3} maxt?maxx?g(x,t)=33?.