【筆記】Windows 成功部署 Suna 開源的通用人工智能代理項目部署日志

#工作記錄

本地部署運行截圖

kortix-ai/suna: Suna - 開源通用 AI 代理

項目概述

Suna 是一個完全開源的 AI 助手,通過自然對話幫助用戶輕松完成研究、數據分析等日常任務。它結合了強大的功能和直觀的界面,能夠理解用戶需求并提供結果。其強大的工具包包括瀏覽器自動化、文件管理、網頁抓取、命令行執行、網站部署以及與各種 API 和服務的集成,這些功能協同工作,使 Suna 能夠通過簡單的對話解決復雜問題并自動化工作流程。

項目架構

Suna 主要由四個組件組成:

  1. 后端 API:基于 Python/FastAPI 構建的服務,負責處理 REST 端點、線程管理以及與 Anthropic 等大語言模型(LLM)的集成(通過 LiteLLM)。
  2. 前端:使用 Next.js/React 開發的應用程序,提供響應式用戶界面,包括聊天界面、儀表盤等。
  3. Agent Docker:為每個代理提供隔離的執行環境,支持瀏覽器自動化、代碼解釋器、文件系統訪問、工具集成和安全特性。
  4. Supabase 數據庫:負責數據持久化,包括認證、用戶管理、對話歷史記錄、文件存儲、代理狀態、分析和實時訂閱等功能。

使用案例

倉庫文檔中列舉了多個使用案例,展示了 Suna 在不同場景下的應用,例如:

  1. 競爭對手分析:分析特定行業的市場情況,生成 PDF 報告。
  2. 風險投資基金列表:獲取美國重要風險投資基金的信息。
  3. 候選人搜索:在 LinkedIn 上查找符合特定條件的候選人。
  4. 公司旅行規劃:生成公司旅行的路線計劃和活動安排。
  5. Excel 數據處理:設置 Excel 電子表格并填充相關信息。
  6. 活動演講者挖掘:尋找符合條件的 AI 倫理演講者并輸出聯系方式和演講摘要。
  7. 科學論文總結和交叉引用:研究和比較科學論文,生成相關報告。
  8. 潛在客戶研究和初步聯系:研究潛在客戶,生成個性化的初步聯系郵件。
  9. SEO 分析:基于網站生成 SEO 報告分析。
  10. 個人旅行規劃:生成個人旅行的詳細行程計劃。
  11. 近期融資的初創公司:從多個平臺篩選特定領域的初創公司并生成報告。
  12. 論壇討論抓取:在論壇上查找特定主題的信息并生成列表。

Microsoft Windows [Version 10.0.27868.1000]
(c) Microsoft Corporation. All rights reserved.

(.venv) F:\PythonProjects\suna>python setup.py '--admin'


? ?███████╗██╗ ? ██╗███╗ ? ██╗ █████╗?
? ?██╔════╝██║ ? ██║████╗ ?██║██╔══██╗
? ?███████╗██║ ? ██║██╔██╗ ██║███████║
? ?╚════██║██║ ? ██║██║╚██╗██║██╔══██║
? ?███████║╚██████╔╝██║ ╚████║██║ ?██║
? ?╚══════╝ ╚═════╝ ╚═╝ ?╚═══╝╚═╝ ?╚═╝
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
? ?Setup Wizard


This wizard will guide you through setting up Suna, an open-source generalist AI agent.


Step 1/8: Checking requirements
==================================================

? ?git is installed
? ?docker is installed
? ?python3 is installed
? ?poetry is installed
? ?pip3 is installed
? ?node is installed
? ?npm is installed
? ?Docker is running
? ?Suna repository detected

完整日志

經過十余次部署嘗試,終于成功將項目運行起來,這一路可謂荊棘密布。整個過程需要配置眾多外部軟件及 API 密鑰,從環境搭建到依賴安裝,從密鑰獲取到服務鏈接,每一個環節都可能暗藏 “陷阱”,需要反復排查與調試。盡管在部署過程中仍遺留了一些待解決的細節問題,但項目已實現基本運行。

現將完整部署日志記錄如下,既便于后期復盤總結,也可供大家參考,提前規避常見報錯。后續我將繼續深入調試,并整理成完整教程分享給大家。

[日志中的API key均已失效(未充值),僅用于日志記錄展示,失效的API key會導致部署受阻]

Microsoft Windows [Version 10.0.27868.1000]
(c) Microsoft Corporation. All rights reserved.(.venv) F:\PythonProjects\suna>python setup.py '--admin'███████╗██╗   ██╗███╗   ██╗ █████╗ ██╔════╝██║   ██║████╗  ██║██╔══██╗███████╗██║   ██║██╔██╗ ██║███████║╚════██║██║   ██║██║╚██╗██║██╔══██║███████║╚██████╔╝██║ ╚████║██║  ██║╚══════╝ ╚═════╝ ╚═╝  ╚═══╝╚═╝  ╚═╝Setup WizardThis wizard will guide you through setting up Suna, an open-source generalist AI agent.Step 1/8: Checking requirements
==================================================?  git is installed
?  docker is installed
?  python3 is installed
?  poetry is installed
?  pip3 is installed
?  node is installed
?  npm is installed
?  Docker is running
?  Suna repository detectedStep 2/8: Collecting Supabase information
==================================================??  You'll need to create a Supabase project before continuing
??  Visit https://supabase.com/dashboard/projects to create one
??  After creating your project, visit the project settings -> Data API and you'll need to get the following information:
??  1. Supabase Project URL (e.g., https://abcdefg.supabase.co)
??  2. Supabase anon key
??  3. Supabase service role key
Press Enter to continue once you've created your Supabase project...
Enter your Supabase Project URL (e.g., https://abcdefg.supabase.co): https://gcnijvljsutcxwsdfsgcedjz.supabase.co
Enter your Supabase anon key: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9safasfsaf.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Imdjbmlqdmxqc3V0Y3h3Z2NlZGp6Iiwicm9sZSI6IsdfmFub24iLCJpYXQiOjE3NDg1MjAwNjksImV4cCI6MjA2NDA5NjA2OX0.WkHwZgqXVwVVR6gnjy1BbfPqqTStdx0Tob0iqMQu5TQ
Enter your Supabase service role key: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpcsdfsafsa3MiOiJzdXBhYmFzZSIsInJlZiI6Imdjbmlqdmxqc3V0Y3h3Z2NlZGp6Iiwicm9sZSI6IsdfnNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0ODUyMDA2OSwiZXhwIjoyMDY0MDk2MDY5fQ.SUGg5LWt41NA_E-fKSt1vBLt4jBFw6sEeMAa1xvYbywStep 3/8: Collecting Daytona information
==================================================??  You'll need to create a Daytona account before continuing
??  Visit https://app.daytona.io/ to create one
??  Then, generate an API key from 'Keys' menu
??  After that, go to Images (https://app.daytona.io/dashboard/images)
??  Click '+ Create Image'
??  Enter 'kortix/suna:0.1.2.8' as the image name
??  Set '/usr/bin/supervisord -n -c /etc/supervisor/conf.d/supervisord.conf' as the Entrypoint
Press Enter to continue once you've completed these steps...
Enter your Daytona API key: dtn_8856676c89b5575977dc9afe69dbe67sdfsfba1d76361c7e5ff537862c98c3827cd2bStep 4/8: Collecting LLM API keys
==================================================??  You need at least one LLM provider API key to use Suna
??  Available LLM providers: OpenAI, Anthropic, OpenRouterSelect LLM providers to configure:
[1] OpenAI                                                                                                                                                                                                                                                                                                      
[2] Anthropic                                                                                                                                                                                                                                                                                                   
[3] OpenRouter (access to multiple models)                                                                                                                                                                                                                                                                      
Enter numbers separated by commas (e.g., 1,2,3)Select providers (required, at least one): 1,3 
??
Configuring OPENAI
Enter your OpenAI API key: sk-proj-dUUSgK9ysdfsdfsdfsaf1cFHa-f9ImeDrJkiPbE4Ei0Bs87-YT4idKotRaYkMlU61EuT2RxW1yGlm6-6lcRhMmT3BlbkFJp7ZEISV8HsdhWTxORCEvlwZ7Rrsdfsafv568HKuYpU_9dm0WnCelDytNKPkqWrchoFNhUUh-iCIAGfX-oARecommended OpenAI models:
[1] openai/gpt-4o                                                                                                                                                                                                                                                                                               
[2] openai/gpt-4o-mini                                                                                                                                                                                                                                                                                          
Select default model (1-4) or press Enter for gpt-4o: 1
??
Configuring OPENROUTER
Enter your OpenRouter API key: sk-or-v1-5405c9fd3c1f99d9122446sdf6ef81f618sdffad90sdfadf192d77ff17cb65a0d312e621286ee6aRecommended OpenRouter models:
[1] openrouter/google/gemini-2.5-pro-preview                                                                                                                                                                                                                                                                    
[2] openrouter/deepseek/deepseek-chat-v3-0324:free                                                                                                                                                                                                                                                              
[3] openrouter/openai/gpt-4o-2024-11-20                                                                                                                                                                                                                                                                         
Select default model (1-3) or press Enter for gemini-2.5-flash: 2
?  Using openrouter/deepseek/deepseek-chat-v3-0324:free as the default modelStep 5/8: Collecting search and web scraping API keys
==================================================??  You'll need to obtain API keys for search and web scraping
??  Visit https://tavily.com/ to get a Tavily API key
??  Visit https://firecrawl.dev/ to get a Firecrawl API key
Enter your Tavily API key: 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
Enter your Firecrawl API key: fc-1801bsdfsfedf8e2942d4bdf536032f798e03
Are you self-hosting Firecrawl? (y/n): NStep 6/8: Collecting RapidAPI key
==================================================??  To enable API services like LinkedIn, and others, you'll need a RapidAPI key
??  Each service requires individual activation in your RapidAPI account:
??  1. Locate the service's `base_url` in its corresponding file (e.g., https://linkedin-data-scraper.p.rapidapi.com in backend/agent/tools/data_providers/LinkedinProvider.py)
??  2. Visit that specific API on the RapidAPI marketplace
??  3. Subscribe to th`e service (many offer free tiers with limited requests)
??  4. Once subscribed, the service will be available to your agent through the API Services tool
??  A RapidAPI key is optional for API services like LinkedIn
??  Visit https://rapidapi.com/ to get your API key if needed
??  You can leave this blank and add it later if desired
Enter your RapidAPI key (optional, press Enter to skip): 936154e36fmshe98d7e77835be33p1c63e0jsnd737f78eca0b
??  Setting up Supabase database...
?  Extracted project reference 'gcnijvljsutcxwgcedjz' from your Supabase URL
??  Changing to backend directory: F:\PythonProjects\suna\backend
??  Logging into Supabase CLI...
Hello from Supabase! Press Enter to open browser and login automatically.Here is your login link in case browser did not open https://supabase.com/dashboard/cli/login?session_id=99b6b3c2-650b-4554-9c86-971ddf5459f1&token_name=cli_AI\love@AI_1748618285&public_key=0423f5ef16356a29c45508ab16157da5afffbe7ced2f713f1258eeb78313524ae557aab83dsdfafedeb19895a1a6f8bd34b1d9d0d38753e5798c5fff7ffad5d8edf4255Enter your verification code: fd5a5ca0
Token cli_AI\love@AI_17486sdfa18285 created successfully.You are now logged in. Happy coding!                                                                                                                                                                                                                                                                            
??  Linking to Supabase project gcnijvljsutcxwgcedjz...
Enter your database password (or leave blank to skip): 
Connecting to remote database...
NOTICE (42P06): schema "supabase_migrations" already exists, skipping
NOTICE (42P07): relation "schema_migrations" already exists, skipping
NOTICE (42701): column "statements" of relation "schema_migrations" already exists, skipping
NOTICE (42701): column "name" of relation "schema_migrations" already exists, skipping
NOTICE (42P06): schema "supabase_migrations" already exists, skipping
NOTICE (42P07): relation "seed_files" already exists, skipping
Finished supabase link.
??  Pushing database migrations...
Connecting to remote database...
Remote database is up to date.
?  Supabase database setup completed
??  IMPORTANT: You need to manually expose the 'basejump' schema in Supabase
??  Go to the Supabase web platform -> choose your project -> Project Settings -> Data API
??  In the 'Exposed Schema' section, add 'basejump' if not already there
Press Enter once you've completed this step...Step 8/8: Starting Suna
==================================================??  You can start Suna using either Docker Compose or by manually starting the frontend, backend and worker.How would you like to start Suna?
[1] Docker Compose (recommended, starts all services)                                                                                                                                                                                                                                                           
[2] Manual startup (requires Redis, RabbitMQ & separate terminals) Enter your choice (1 or 2): 1
??  Starting Suna with Docker Compose...
??  Building images locally...
Compose can now delegate builds to bake for better performance.To do so, set COMPOSE_BAKE=true.
[+] Building 426.5s (34/34) FINISHED                                                                                                                                                                                                                                                       docker:desktop-linux=> [worker internal] load build definition from Dockerfile                                                                                                                                                                                                                                                0.0s=> => transferring dockerfile: 1.63kB                                                                                                                                                                                                                                                                     0.0s => [backend internal] load metadata for docker.io/library/python:3.11-slim                                                                                                                                                                                                                                6.3s => [worker internal] load .dockerignore                                                                                                                                                                                                                                                                   0.0s=> => transferring context: 2B                                                                                                                                                                                                                                                                            0.0s => [backend 1/7] FROM docker.io/library/python:3.11-slim@sha256:dbf1de478a55d6763afaa39c2f3d7b54b25230614980276de5cacdde79529d0c                                                                                                                                                                          0.1s => => resolve docker.io/library/python:3.11-slim@sha256:dbf1de478a55d6763afaa39c2f3d7b54b25230614980276de5cacdde79529d0c                                                                                                                                                                                  0.0s => [worker internal] load build context                                                                                                                                                                                                                                                                   0.0s => => transferring context: 7.75kB                                                                                                                                                                                                                                                                        0.0s => CACHED [backend 2/7] WORKDIR /app                                                                                                                                                                                                                                                                      0.0s => CACHED [backend 3/7] RUN apt-get update && apt-get install -y --no-install-recommends     build-essential     curl     && rm -rf /var/lib/apt/lists/*                                                                                                                                                  0.0s => CACHED [backend 4/7] RUN useradd -m -u 1000 appuser &&     mkdir -p /app/logs &&     chown -R appuser:appuser /app                                                                                                                                                                                     0.0s => CACHED [worker 5/7] COPY --chown=appuser:appuser requirements.txt .                                                                                                                                                                                                                                    0.0s => [worker 6/7] RUN pip install --no-cache-dir -r requirements.txt gunicorn                                                                                                                                                                                                                             110.4s => [worker 7/7] COPY --chown=appuser:appuser . .                                                                                                                                                                                                                                                          0.1s=> [worker] exporting to image                                                                                                                                                                                                                                                                           12.7s=> => exporting layers                                                                                                                                                                                                                                                                                    9.7s=> => exporting manifest sha256:a6e63d8f4567dc7ce2dd73de276ab5f62b50ae4991dbfa03f890eea7cc0c9d78                                                                                                                                                                                                          0.0s=> => exporting config sha256:236895aed0cf64c4db115b31dbfae75bbe84ec6c4d94d3f7f1648a1961435ef8                                                                                                                                                                                                            0.0s=> => exporting attestation manifest sha256:846935b1db61c8759fc8603810ba0abe08e537d4f5a86f2f678a26d7f96fc6e8                                                                                                                                                                                              0.0s=> => exporting manifest list sha256:f9938f968b86a5dfdbbdfd7b4eb8b76a848f2937c4c45eaa13e8f5f924d4fad6                                                                                                                                                                                                     0.0s=> => naming to docker.io/library/suna-worker:latest                                                                                                                                                                                                                                                      0.0s => => unpacking to docker.io/library/suna-worker:latest                                                                                                                                                                                                                                                   2.8s => [worker] resolving provenance for metadata file                                                                                                                                                                                                                                                        0.0s=> [backend internal] load build definition from Dockerfile                                                                                                                                                                                                                                               0.0s=> => transferring dockerfile: 1.63kB                                                                                                                                                                                                                                                                     0.0s => [backend internal] load .dockerignore                                                                                                                                                                                                                                                                  0.0s=> => transferring context: 2B                                                                                                                                                                                                                                                                            0.0s => [backend internal] load build context                                                                                                                                                                                                                                                                  0.0s => => transferring context: 5.75kB                                                                                                                                                                                                                                                                        0.0s => CACHED [backend 5/7] COPY --chown=appuser:appuser requirements.txt .                                                                                                                                                                                                                                   0.0s => CACHED [backend 6/7] RUN pip install --no-cache-dir -r requirements.txt gunicorn                                                                                                                                                                                                                       0.0s => CACHED [backend 7/7] COPY --chown=appuser:appuser . .                                                                                                                                                                                                                                                  0.0s => [backend] exporting to image                                                                                                                                                                                                                                                                           0.1s => => exporting layers                                                                                                                                                                                                                                                                                    0.0s => => exporting manifest sha256:14fa145bd6eb38ce984f807e8744d0937a4fc107f068d40433d7c14bea4d1476                                                                                                                                                                                                          0.0s => => exporting config sha256:d6f08a5c47d5a9ef5e550f4ef620be566ce98db2b10141b4f123874939dcdef8                                                                                                                                                                                                            0.0s => => exporting attestation manifest sha256:9aa719d69af0e8c88936163351a6fa4cf448145ec7c25f06833782299e46ed28                                                                                                                                                                                              0.0s => => exporting manifest list sha256:fb06e27847e8b9b247ae01196489d0f75305e6c736b823793bc50850cc55edeb                                                                                                                                                                                                     0.0s => => naming to docker.io/library/suna-backend:latest                                                                                                                                                                                                                                                     0.0s=> => unpacking to docker.io/library/suna-backend:latest                                                                                                                                                                                                                                                  0.0s => [backend] resolving provenance for metadata file                                                                                                                                                                                                                                                       0.0s => [frontend internal] load build definition from Dockerfile                                                                                                                                                                                                                                              0.0s=> => transferring dockerfile: 704B                                                                                                                                                                                                                                                                       0.0s => [frontend internal] load metadata for docker.io/library/node:20-slim                                                                                                                                                                                                                                   2.8s => [frontend internal] load .dockerignore                                                                                                                                                                                                                                                                 0.0s=> => transferring context: 2B                                                                                                                                                                                                                                                                            0.0s => [frontend 1/7] FROM docker.io/library/node:20-slim@sha256:cb4abfbba7dfaa78e21ddf2a72a592e5f9ed36ccf98bdc8ad3ff945673d288c2                                                                                                                                                                            21.0s => => resolve docker.io/library/node:20-slim@sha256:cb4abfbba7dfaa78e21ddf2a72a592e5f9ed36ccf98bdc8ad3ff945673d288c2                                                                                                                                                                                      0.0s => => sha256:d9d139bf2ac215a0d57ef09e790699a8fd5587c00200db6a91446278356b32aa 447B / 447B                                                                                                                                                                                                                12.3s => => sha256:b12d1e6fd3ba6067543928fa3e4c9a9307711cf5a4593699d157dba3af3e7d21 1.71MB / 1.71MB                                                                                                                                                                                                            15.3s => => sha256:d34dc2c1b56bf7f58faea3b73986ac0a274f2b369cc5f24a5ea26015fdd57e95 41.17MB / 41.17MB                                                                                                                                                                                                          19.2s => => sha256:057bf83be68af82a505c30eb852a4b542c264fe429954c8e0c0e204a9c9dd86e 3.31kB / 3.31kB                                                                                                                                                                                                            20.4s => => extracting sha256:057bf83be68af82a505c30eb852a4b542c264fe429954c8e0c0e204a9c9dd86e                                                                                                                                                                                                                  0.0s => => extracting sha256:d34dc2c1b56bf7f58faea3b73986ac0a274f2b369cc5f24a5ea26015fdd57e95                                                                                                                                                                                                                  0.4s => => extracting sha256:b12d1e6fd3ba6067543928fa3e4c9a9307711cf5a4593699d157dba3af3e7d21                                                                                                                                                                                                                  0.0s => => extracting sha256:d9d139bf2ac215a0d57ef09e790699a8fd5587c00200db6a91446278356b32aa                                                                                                                                                                                                                  0.0s => [frontend internal] load build context                                                                                                                                                                                                                                                                 0.4s => => transferring context: 15.10MB                                                                                                                                                                                                                                                                       0.3s => [frontend 2/7] WORKDIR /app                                                                                                                                                                                                                                                                            0.4s => [frontend 3/7] COPY package*.json ./                                                                                                                                                                                                                                                                   0.0s => [frontend 4/7] RUN apt-get update && apt-get install -y --no-install-recommends     python3     make     g++     build-essential     pkg-config     libcairo2-dev     libpango1.0-dev     libjpeg-dev     libgif-dev     librsvg2-dev     && rm -rf /var/lib/apt/lists/*                              95.4s => [frontend 5/7] RUN npm install                                                                                                                                                                                                                                                                        31.0s => [frontend 6/7] COPY . .                                                                                                                                                                                                                                                                                0.4s => [frontend 7/7] RUN npm run build                                                                                                                                                                                                                                                                      96.1s => [frontend] exporting to image                                                                                                                                                                                                                                                                         42.2s => => exporting layers                                                                                                                                                                                                                                                                                   32.0s => => exporting manifest sha256:5aa3bf772b57c08f01051d99a26dd00ca11bd0f6c9964672d854b5a9237ca2cc                                                                                                                                                                                                          0.0s => => exporting config sha256:c29ae31e61f62fbc9cc353572cc75685d91c48c4f930fc0e8aba4f785f0a0a33                                                                                                                                                                                                            0.0s => => exporting attestation manifest sha256:a228930985cc14ebd9460baadf26c81cc3e51c65f11868d9b576ce2c917604a2                                                                                                                                                                                              0.0s => => exporting manifest list sha256:c905a71017595001e983964ecb5076c266eee581bd54b08a8face117267b8f0e                                                                                                                                                                                                     0.0s => => naming to docker.io/library/suna-frontend:latest                                                                                                                                                                                                                                                    0.0s => => unpacking to docker.io/library/suna-frontend:latest                                                                                                                                                                                                                                                10.0s => [frontend] resolving provenance for metadata file                                                                                                                                                                                                                                                      0.0s 
[+] Running 11/11? backend                      Built                                                                                                                                                                                                                                                                      0.0s ? frontend                     Built                                                                                                                                                                                                                                                                      0.0s ? worker                       Built                                                                                                                                                                                                                                                                      0.0s ? Network suna_default         Created                                                                                                                                                                                                                                                                    0.6s ? Volume "suna_rabbitmq_data"  Created                                                                                                                                                                                                                                                                    0.0s ? Volume "suna_redis_data"     Created                                                                                                                                                                                                                                                                    0.0s ? Container suna-rabbitmq-1    Healthy                                                                                                                                                                                                                                                                   15.6s ? Container suna-redis-1       Healthy                                                                                                                                                                                                                                                                   15.6s ? Container suna-worker-1      Started                                                                                                                                                                                                                                                                   13.8s ? Container suna-backend-1     Started                                                                                                                                                                                                                                                                   16.1s ? Container suna-frontend-1    Started                                                                                                                                                                                                                                                                   19.0s 
??  Waiting for services to start...
??  Some services might not be running correctly. Check 'docker compose ps' for details.? Suna Setup Complete! ???  Suna is configured to use openrouter/deepseek/deepseek-chat-v3-0324:free as the default LLM model
??  Your Suna instance is now running!
??  Access it at: http://localhost:3000
??  Create an account using Supabase authentication to start using SunaUseful Docker commands:docker compose ps         - Check the status of Suna servicesdocker compose logs       - View logs from all servicesdocker compose logs -f    - Follow logs from all servicesdocker compose down       - Stop Suna servicesdocker compose up -d      - Start Suna services (after they've been stopped)(.venv) F:\PythonProjects\suna>

?

  • 訪問日志中輸出的http://localhost:3000網頁,使用 Supabase 賬號注冊登錄。

?

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/diannao/85406.shtml
繁體地址,請注明出處:http://hk.pswp.cn/diannao/85406.shtml
英文地址,請注明出處:http://en.pswp.cn/diannao/85406.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

PCB制作入門

文章目錄 1 嘉立創使用旋轉 2元器件選擇MP2315SLM7815與LM7915 1 嘉立創使用 旋轉 空格旋轉 2元器件選擇 MP2315S MP2315S 是一款內置功率 MOSFET 的高效率同步整流降壓開關變換器。 其輸入電壓范圍為 4.5V 至 24V ,能實現 3A 連續輸出電流,負載與…

2025——》NumPy中的np.logspace使用/在什么場景下適合使用np.logspace?NumPy中的np.logspace用法詳解

1.NumPy中的np.logspace使用: 在 NumPy 中,np.logspace函數用于生成對數尺度上等間距分布的數值序列,適用于科學計算、數據可視化等需要對數間隔數據的場景。以下是其核心用法和關鍵細節: 一、基礎語法與參數解析: numpy.logspace(start, stop, num=50, endpoint=True, ba…

Java實現中文姓名轉拼音生成用戶信息并寫入文件

中文姓名轉拼音 Java實現中文姓名轉拼音生成用戶信息并寫入文件(shili域名版)一、項目背景與功能簡介二、技術棧與核心組件2.1 主要技術2.2 功能模塊 三、核心代碼解析3.1 主函數邏輯(流程控制)3.2 拼音轉換模塊(核心功…

Google car key:安全、便捷的汽車解鎖新選擇

有了兼容的汽車和 Android 手機,Google car key可讓您將Android 手機用作車鑰匙。您可以通過兼容的 Android 手機鎖定、解鎖、啟動汽車并執行更多功能。但是,Google car key安全嗎?它是如何工作的?如果我的手機電池沒電了怎么辦&a…

如何輕松將 iPhone 備份到外部硬盤

當您的iPhone和電腦上的存儲空間有限時,您可能希望將iPhone備份到外部硬盤上,這樣可以快速釋放iPhone上的存儲空間,而不占用電腦上的空間,并為您的數據提供額外的安全性。此外,我們還提供 4 種有效的解決方案&#xff…

AI煉丹日志-22 - MCP 自動操作 Figma+Cursor 自動設計原型

MCP 基本介紹 官方地址: https://modelcontextprotocol.io/introduction “MCP 是一種開放協議,旨在標準化應用程序向大型語言模型(LLM)提供上下文的方式。可以把 MCP 想象成 AI 應用程序的 USB-C 接口。就像 USB-C 提供了一種…

機器學習-線性回歸基礎

一、什么是回歸 依據輸入x寫出一個目標值y的計算方程,求回歸系數的過程就叫回歸。簡言之:根據題意列出方程,求出系數的過程就叫做回歸。 回歸的目的是預測數值型的目標值y,分類的目的預測標稱型的目標值y。 二、線性回歸 2.1線性…

解決RAGFlow(v0.19.0)有部分PDF無法解析成功的問題。

ragflow版本為:v0.19.0 1.解析的時候報錯:Internal server error while chunking: Coordinate lower is less than upper。 看報錯懷疑是分片的問題,于是把文檔的切片方法中的“建議文本塊大小”數值(默認512)調小&…

【前端】html2pdf實現用前端下載pdf

npm安裝完后&#xff0c;編寫代碼。 <template><div id"pdf-content">需要被捕獲為pdf的內容</div> </template><script> import html2pdf from html2pdf.js;export default {methods: {downloadPdf() {const element document.getE…

從零實現富文本編輯器#4-瀏覽器選區模型的核心交互策略

先前我們提到了&#xff0c;數據模型的設計是編輯器的基礎模塊&#xff0c;其直接影響了選區模塊的表示。選區模塊的設計同樣是編輯器的基礎部分&#xff0c;編輯器應用變更時操作范圍的表達&#xff0c;就需要基于選區模型來實現&#xff0c;也就是說選區代表的意義是編輯器需…

數論——質數和合數及求質數

質數、合數和質數篩 質數和合數及求質數試除法判斷質數Eratosthenes篩選法&#xff08;埃氏篩&#xff09;線性篩&#xff08;歐拉篩&#xff09; 質數有關OJ列舉P1835 素數密度 - 洛谷簡單的哥赫巴德猜想和cin優化 質數和合數及求質數 一個大于 1 的自然數&#xff0c;除了 1…

多商戶系統源碼性能調優實戰:從瓶頸定位到高并發架構設計!

在電商業務爆發式增長的今天&#xff0c;多商戶系統作為支撐平臺方、入駐商家和終端消費者的核心樞紐&#xff0c;其性能表現直接決定了商業變現效率。當你的商城在促銷期間崩潰&#xff0c;損失的不僅是訂單&#xff0c;更是用戶信任。 本文將深入剖析多商戶系統源碼性能優化的…

JDBC連不上mysql:Unable to load authentication plugin ‘caching_sha2_password‘.

最近為一個spring-boot項目下了mysql-9.3.0&#xff0c;結果因為mysql版本太新一直報錯連不上。 錯誤如下&#xff1a; 2025-06-01 16:19:43.516 ERROR 22088 --- [http-nio-8080-exec-2] o.a.c.c.C.[.[.[/].[dispatcherServlet] : Servlet.service() for servlet [dispat…

超標量處理器設計6-指令解碼

1. 指令緩存 指令緩存本質上是一個FIFO, 它能夠將指令按照程序中指定的順序存儲起來&#xff0c;這樣指令在解碼的時候&#xff0c;仍然可以按照程序中指定的順序進行解碼。指令緩存是超標量處理器中必須的部件&#xff0c;其原因有兩個&#xff1a; 1. 每周期可以取指的個數大…

基于 HT for Web 輕量化 3D 數字孿生數據中心解決方案

一、技術架構&#xff1a;HT for Web 的核心能力 圖撲軟件自主研發的 HT for Web 是基于 HTML5 的 2D/3D 可視化引擎&#xff0c;核心技術特性包括&#xff1a; 跨平臺渲染&#xff1a;采用 WebGL 技術&#xff0c;支持 PC、移動端瀏覽器直接訪問&#xff0c;兼容主流操作系統…

【Linux】shell的條件判斷

目錄 一.使用邏輯運算符判定命令執行結果 二.條件判斷方法 三.判斷表達式 3.1文件判斷表達式 3.2字符串測試表達式 3.3整數測試表達式 3.4邏輯操作符 一.使用邏輯運算符判定命令執行結果 && 在命令執行后如果沒有任何報錯時會執行符號后面的動作|| 在命令執行后…

【Python辦公】Excel簡易透視辦公小工具

目錄 專欄導讀1. 背景介紹2. 功能介紹3. 庫的安裝4. 界面展示5. 使用方法6. 實際應用場景7. 優化方向完整代碼總結專欄導讀 ?? 歡迎來到Python辦公自動化專欄—Python處理辦公問題,解放您的雙手 ?????? 博客主頁:請點擊——> 一晌小貪歡的博客主頁求關注 ?? 該系…

HarmonyOS鴻蒙與React Native的融合開發模式以及能否增加對性能優化的具體案例

鴻蒙與React Native的融合開發模式 一、技術架構設計 底層適配層 通過HarmonyOS的NDK封裝原生能力&#xff08;如分布式軟總線、AI引擎&#xff09; 使用React Native的Native Modules橋接鴻蒙API&#xff08;需重寫Java/Objective-C部分為ArkTS&#xff09; 組件映射機制 …

LLaMA-Factory - 批量推理(inference)的腳本

scripts/vllm_infer.py 是 LLaMA-Factory 團隊用于批量推理&#xff08;inference&#xff09;的腳本&#xff0c;基于 vLLM 引擎&#xff0c;支持高效的并行推理。它可以對一個數據集批量生成模型輸出&#xff0c;并保存為 JSONL 文件&#xff0c;適合大規模評測和自動化測試。…

麥克風和電腦內播放聲音實時識別轉文字軟件FunASR整合包V5下載

我基于FunASR制作的實時語音識別轉文字軟件當前更新到V5版本。軟件可以實時識別麥克風聲音和電腦內播放聲音轉為文字。 FunASR軟件介紹 FunASR 是一款基礎語音識別工具包和開源 SOTA 預訓練模型&#xff0c;支持語音識別、語音活動檢測、文本后處理等。 我使用FunASR制作了一…