1. model.py(用的是上一篇文章的代碼:從0搭建Transformer-CSDN博客)
import torch
import torch.nn as nn
import mathclass PositionalEncoding(nn.Module):def __init__ (self, d_model, dropout, max_len=5000):super(PositionalEncoding, self).__init__()self.dropout = nn.Dropout(p=dropout)# [[1, 2, 3],# [4, 5, 6],# [7, 8, 9]]pe = torch.zeros(max_len, d_model)# [[0],# [1],# [2]]position = torch.arange(0, max_len, dtype = torch.float).unsqueeze(1)div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))pe[:, 0::2] = torch.sin(position * div_term)pe[:, 1::2] = torch.cos(position * div_term)pe = pe.unsqueeze(0)# 位置編碼固定,不更新參數# 保存模型時會保存緩沖區,在引入模型時緩沖區也被引入self.register_buffer('pe', pe)def forward(self, x):# 不計算梯度x = x + self.pe[:, :x.size(1)].requires_grad_(False)return xclass MultiHeadAttention(nn.Module):def __init__(self, d_model, num_heads):super(MultiHeadAttention, self).__init__()assert d_model % num_heads == 0self.d_k = d_model // num_headsself.num_heads = num_headsself.W_q = nn.Linear(d_model, d_model)self.W_k = nn.Linear(d_model, d_model)self.W_v = nn.Linear(d_model, d_model)self.W_o = nn.Linear(d_model, d_model)def forward(self, query, key, value, mask=None):batch_size = query.size(0)Q = self.W_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)K = self.W_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)V = self.W_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)if mask is not None:scores = scores.masked_fill(mask == 0, -1e9)attn_weights = torch.softmax(scores, dim=-1)context = torch.matmul(attn_weights, V)context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_k * self.num_heads)return self.W_o(context)class EncoderLayer(nn.Module):def __init__(self, d_model, num_heads, d_ff, dropout = 0.1):super().__init__()self.attn = MultiHeadAttention(d_model, num_heads)self.feed_forward = nn.Sequential(nn.Linear(d_model, d_ff),nn.ReLU(),nn.Linear(d_ff, d_model))self.norm1 = nn.LayerNorm(d_model)self.norm2 = nn.LayerNorm(d_model)self.dropout = nn.Dropout(dropout)def forward(self, x, mask=None):attn_output = self.attn(x, x, x, mask)x = self.norm1(x + self.dropout(attn_output))ff_output = self.feed_forward(x)x = self.norm2(x + self.dropout(ff_output))return xclass DecoderLayer(nn.Module):def __init__(self, d_model, num_heads, d_ff, dropout=0.1):super(DecoderLayer, self).__init__()self.self_attn = MultiHeadAttention(d_model, num_heads)self.cross_attn = MultiHeadAttention(d_model, num_heads)self.norm1 = nn.LayerNorm(d_model)self.norm2 = nn.LayerNorm(d_model)self.norm3 = nn.LayerNorm(d_model)self.feed_forward = nn.Sequential(nn.Linear(d_model, d_ff),nn.ReLU(),nn.Linear(d_ff, d_model))self.dropout = nn.Dropout(dropout)def forward(self, x, enc_output, src_mask, tgt_mask):attn_output = self.self_attn(x, x, x, tgt_mask)x = self.norm1(x + self.dropout(attn_output))attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)x = self.norm2(x + self.dropout(attn_output))ff_output = self.feed_forward(x)x = self.norm3(x + self.dropout(ff_output))return xclass Transformer(nn.Module):def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8, num_layers=6, d_ff=2048, dropout=0.1):super(Transformer, self).__init__()self.encoder_embed = nn.Embedding(src_vocab_size, d_model)self.decoder_embed = nn.Embedding(tgt_vocab_size, d_model)self.pos_encoder = PositionalEncoding(d_model, dropout)self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])self.fc_out = nn.Linear(d_model, tgt_vocab_size)def encode(self, src, src_mask):src_embeded = self.encoder_embed(src)src = self.pos_encoder(src_embeded)for layer in self.encoder_layers:src = layer(src, src_mask)return srcdef decode(self, tgt, enc_output, src_mask, tgt_mask):tgt_embeded = self.decoder_embed(tgt)tgt = self.pos_encoder(tgt_embeded)for layer in self.decoder_layers:tgt = layer(tgt, enc_output, src_mask, tgt_mask)return tgtdef forward(self, src, tgt, src_mask, tgt_mask):enc_output = self.encode(src, src_mask)dec_output = self.decode(tgt, enc_output, src_mask, tgt_mask)logits = self.fc_out(dec_output)return logits
2. train.py(數據量很大,使用其中一部分進行訓練和驗證,數據集來源:中英互譯數據集(translation2019zh)_數據集-飛槳AI Studio星河社區)
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from model import Transformer, PositionalEncoding
import math
import numpy as np
import os
import json
from tqdm import tqdm# --- Data Loading for JSON Lines format ---
# MODIFIED: Added max_lines parameter
def load_data_from_jsonl(file_path, max_lines=None): # <--- ADD max_lines parameter"""Loads English and Chinese sentences from a JSON Lines file, up to max_lines."""en_sentences, zh_sentences = [], []print(f"Loading data from {file_path}..." + (f" (up to {max_lines} lines)" if max_lines else ""))if not os.path.exists(file_path):print(f"Error: Data file not found at {file_path}")return [], []try:with open(file_path, 'r', encoding='utf-8') as f:lines_processed = 0for line in tqdm(f, desc=f"Reading {os.path.basename(file_path)}", total=max_lines if max_lines else None):if max_lines is not None and lines_processed >= max_lines: # <--- CHECK max_linesprint(f"\nReached max_lines limit of {max_lines} for {file_path}.")breaktry:data = json.loads(line.strip())if 'english' in data and 'chinese' in data:en_sentences.append(data['english'])zh_sentences.append(data['chinese'])lines_processed += 1 # <--- INCREMENT lines_processedelse:# This print can be noisy, consider removing or logging for large files# print(f"Warning: Skipping line due to missing 'english' or 'chinese' key: {line.strip()}")passexcept json.JSONDecodeError:# print(f"Warning: Skipping invalid JSON line: {line.strip()}")passexcept Exception as e:print(f"An error occurred while reading {file_path}: {e}")return [], []print(f"Loaded {len(en_sentences)} sentence pairs from {file_path}.")return en_sentences, zh_sentences# ... (Vocab, TranslationDataset, collate_fn, create_masks classes/functions remain the same) ...
# --- Vocab Class (Consider Subword Tokenization for large datasets later) ---
class Vocab:def __init__(self, sentences, min_freq=1, special_tokens=None):self.stoi = {}self.itos = {}if special_tokens is None:# Define PAD first as index 0 is often assumed for paddingspecial_tokens = ['<pad>', '<unk>', '<sos>', '<eos>']self.special_tokens = special_tokens# Initialize special tokens first to guarantee their indicesidx = 0for token in special_tokens:self.stoi[token] = idxself.itos[idx] = tokenidx += 1# Count character frequenciescounter = {}print("Counting character frequencies for vocab...")for s in tqdm(sentences, desc="Processing sentences for vocab"):if isinstance(s, str):for char in s:counter[char] = counter.get(char, 0) + 1# Add other tokens meeting min_freq, sorted by frequency# Filter out already added special tokens before sortingnon_special_counts = {token: count for token, count in counter.items() if token not in self.special_tokens}sorted_tokens = sorted(non_special_counts.items(), key=lambda item: item[1], reverse=True)for token, count in tqdm(sorted_tokens, desc="Building vocab mapping"):if count >= min_freq:# Check again if it's not a special token (redundant but safe)if token not in self.stoi:self.stoi[token] = idxself.itos[idx] = tokenidx += 1# Ensure <unk> exists and points to the correct index if it was overriddenif '<unk>' in self.special_tokens:unk_intended_idx = self.special_tokens.index('<unk>')if self.stoi.get('<unk>') != unk_intended_idx or self.itos.get(unk_intended_idx) != '<unk>':print(f"Warning: <unk> token mapping might be inconsistent. Forcing index {unk_intended_idx}.")# Find current mapping if any and remove itcurrent_unk_mapping_val = self.stoi.pop('<unk>', None) # Get the index value# Remove from itos if the index was indeed mapped to something else or old <unk>if current_unk_mapping_val is not None and self.itos.get(current_unk_mapping_val) == '<unk>':# If itos[idx] was already <unk>, it's fine. If it was something else, we might have a problem.# This logic ensures itos[unk_intended_idx] will be <unk># and stoi['<unk>'] will be unk_intended_idx# We might overwrite another token if it landed on unk_intended_idx before <unk># But special tokens should have priority.if self.itos.get(unk_intended_idx) is not None and self.itos.get(unk_intended_idx) != '<unk>':# A non-<unk> token is at the intended <unk> index. Find its stoi entry and remove.token_at_unk_idx = self.itos.get(unk_intended_idx)if token_at_unk_idx in self.stoi and self.stoi[token_at_unk_idx] == unk_intended_idx:del self.stoi[token_at_unk_idx]self.stoi['<unk>'] = unk_intended_idxself.itos[unk_intended_idx] = '<unk>'def __len__(self):return len(self.itos) # itos should be the definitive source of size# --- TranslationDataset Class (No changes needed) ---
class TranslationDataset(Dataset):def __init__(self, en_sentences, zh_sentences, src_vocab, tgt_vocab):self.src_data = []self.tgt_data = []print("Creating dataset tensors...")# Get special token indices oncesrc_sos_idx = src_vocab.stoi['<sos>']src_eos_idx = src_vocab.stoi['<eos>']src_unk_idx = src_vocab.stoi['<unk>']tgt_sos_idx = tgt_vocab.stoi['<sos>']tgt_eos_idx = tgt_vocab.stoi['<eos>']tgt_unk_idx = tgt_vocab.stoi['<unk>']# Use tqdm for progressfor en, zh in tqdm(zip(en_sentences, zh_sentences), total=len(en_sentences), desc="Vectorizing data"):src_ids = [src_sos_idx] + [src_vocab.stoi.get(c, src_unk_idx) for c in en] + [src_eos_idx]tgt_ids = [tgt_sos_idx] + [tgt_vocab.stoi.get(c, tgt_unk_idx) for c in zh] + [tgt_eos_idx]# Consider adding length filtering here if not done during preprocessingself.src_data.append(torch.LongTensor(src_ids))self.tgt_data.append(torch.LongTensor(tgt_ids))print("Dataset tensors created.")def __len__(self):return len(self.src_data)def __getitem__(self, idx):return self.src_data[idx], self.tgt_data[idx]# --- Collate Function (Ensure PAD index is correct) ---
def collate_fn(batch, pad_idx=0): # Pass pad_idx explicitly or get from vocab"""Pads sequences within a batch."""src_batch, tgt_batch = zip(*batch)# Pad sequences - Use batch_first=True as it's often more intuitivesrc_batch_padded = nn.utils.rnn.pad_sequence(src_batch, padding_value=pad_idx, batch_first=True)tgt_batch_padded = nn.utils.rnn.pad_sequence(tgt_batch, padding_value=pad_idx, batch_first=True)return src_batch_padded, tgt_batch_padded # Return (Batch, Seq)# --- Mask Creation Function (Adjust for batch_first=True) ---
def create_masks(src, tgt, pad_idx):"""Creates masks for source and target sequences (assuming batch_first=True)."""# src shape: (Batch, Src_Seq)# tgt shape: (Batch, Tgt_Seq)device = src.device# Source Padding Mask: (Batch, 1, 1, Src_Seq)src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)# Target Masks# Target Padding Mask: (Batch, 1, Tgt_Seq, 1)tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(-1) # Add dim for broadcasting with look_ahead# Look-ahead Mask: (Tgt_Seq, Tgt_Seq) -> (1, 1, Tgt_Seq, Tgt_Seq) for broadcastingtgt_seq_length = tgt.size(1)look_ahead_mask = (1 - torch.triu(torch.ones((tgt_seq_length, tgt_seq_length), device=device), diagonal=1)).bool().unsqueeze(0).unsqueeze(0) # Add Batch and Head dims# Combined Target Mask: (Batch, 1, Tgt_Seq, Tgt_Seq)tgt_mask = tgt_pad_mask & look_ahead_maskreturn src_mask.to(device), tgt_mask.to(device)# --- Main Execution Block ---
if __name__ == '__main__':# --- Configuration ---TRAIN_DATA_PATH = 'data/translation2019zh_train.json'VALID_DATA_PATH = 'data/translation2019zh_valid.json'MODEL_SAVE_PATH = 'best_model_subset.pth' # New model name for subset# MODIFIED: Define how many lines to use# For example, 100,000 for training and 10,000 for validation# Adjust these numbers based on your resources and desired training speedMAX_TRAIN_LINES = 1000000MAX_VALID_LINES = 100000# Hyperparameters (You might want smaller model for smaller data subset)BATCH_SIZE = 32NUM_EPOCHS = 10 # Can increase epochs for smaller datasetLEARNING_RATE = 1e-4# Consider using smaller model for faster iteration on subsetD_MODEL = 256NUM_HEADS = 8 # Must be divisor of d_modelNUM_LAYERS = 3D_FF = 1024 # Usually 4 * D_MODELDROPOUT = 0.1MIN_FREQ = 1 # For smaller datasets, min_freq=1 might be okayPRINT_FREQ = 100 # Print more often for smaller datasetsDEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print(f"Using device: {DEVICE}")# --- Load Data (using the max_lines parameter) ---print(f"Loading subset of training data (up to {MAX_TRAIN_LINES} lines)...")train_en_sentences, train_zh_sentences = load_data_from_jsonl(TRAIN_DATA_PATH, max_lines=MAX_TRAIN_LINES)if not train_en_sentences:print("No training data loaded. Exiting.")exit()print(f"Loading subset of validation data (up to {MAX_VALID_LINES} lines)...")val_en_sentences, val_zh_sentences = load_data_from_jsonl(VALID_DATA_PATH, max_lines=MAX_VALID_LINES)if not val_en_sentences:print("Warning: No validation data loaded. Proceeding without validation.")# --- Build Vocabularies (ONLY from the training data subset) ---print("Building vocabularies from training data subset...")src_vocab = Vocab(train_en_sentences, min_freq=MIN_FREQ)tgt_vocab = Vocab(train_zh_sentences, min_freq=MIN_FREQ)print(f"Source vocab size: {len(src_vocab)}")print(f"Target vocab size: {len(tgt_vocab)}")PAD_IDX = src_vocab.stoi['<pad>']if PAD_IDX != 0 or tgt_vocab.stoi['<pad>'] != 0:print("Error: PAD index is not 0. Collate function and loss needs adjustment.")exit()# --- Create Datasets ---print("Creating training dataset...")train_dataset = TranslationDataset(train_en_sentences, train_zh_sentences, src_vocab, tgt_vocab)if val_en_sentences:print("Creating validation dataset...")val_dataset = TranslationDataset(val_en_sentences, val_zh_sentences, src_vocab, tgt_vocab)val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, collate_fn=lambda b: collate_fn(b, PAD_IDX))print(f"Train size: {len(train_dataset)}, Validation size: {len(val_dataset)}")else:val_loader = Noneprint(f"Train size: {len(train_dataset)} (No validation set)")train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=lambda b: collate_fn(b, PAD_IDX))# --- Initialize Model ---print("Initializing model...")model = Transformer(src_vocab_size=len(src_vocab),tgt_vocab_size=len(tgt_vocab),d_model=D_MODEL,num_heads=NUM_HEADS,num_layers=NUM_LAYERS,d_ff=D_FF,dropout=DROPOUT).to(DEVICE)def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)print(f'The model has {count_parameters(model):,} trainable parameters')optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE, betas=(0.9, 0.98), eps=1e-9)criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)# --- Training Loop ---best_val_loss = float('inf')print("Starting training on data subset...")for epoch in range(NUM_EPOCHS):model.train()epoch_loss = 0train_iterator = tqdm(train_loader, desc=f"Epoch {epoch+1}/{NUM_EPOCHS} Training")for i, (src, tgt) in enumerate(train_iterator):src = src.to(DEVICE)tgt = tgt.to(DEVICE)tgt_input = tgt[:, :-1]tgt_output = tgt[:, 1:]src_mask, tgt_mask = create_masks(src, tgt_input, PAD_IDX)logits = model(src, tgt_input, src_mask, tgt_mask)output_dim = logits.shape[-1]logits_reshaped = logits.contiguous().view(-1, output_dim)tgt_output_reshaped = tgt_output.contiguous().view(-1)loss = criterion(logits_reshaped, tgt_output_reshaped)optimizer.zero_grad()loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()epoch_loss += loss.item()train_iterator.set_postfix(loss=loss.item())avg_train_loss = epoch_loss / len(train_loader)if val_loader:model.eval()val_loss = 0val_iterator = tqdm(val_loader, desc=f"Epoch {epoch+1}/{NUM_EPOCHS} Validation")with torch.no_grad():for src, tgt in val_iterator:src = src.to(DEVICE)tgt = tgt.to(DEVICE)tgt_input = tgt[:, :-1]tgt_output = tgt[:, 1:]src_mask, tgt_mask = create_masks(src, tgt_input, PAD_IDX)logits = model(src, tgt_input, src_mask, tgt_mask)output_dim = logits.shape[-1]logits_reshaped = logits.contiguous().view(-1, output_dim)tgt_output_reshaped = tgt_output.contiguous().view(-1)loss = criterion(logits_reshaped, tgt_output_reshaped)val_loss += loss.item()val_iterator.set_postfix(loss=loss.item())avg_val_loss = val_loss / len(val_loader)print(f'\nEpoch {epoch+1} Summary: Train Loss: {avg_train_loss:.4f}, Val Loss: {avg_val_loss:.4f}')if avg_val_loss < best_val_loss:print(f"Validation loss decreased ({best_val_loss:.4f} --> {avg_val_loss:.4f}). Saving model to {MODEL_SAVE_PATH}...")best_val_loss = avg_val_losstorch.save({'model_state_dict': model.state_dict(),'src_vocab': src_vocab,'tgt_vocab': tgt_vocab,'epoch': epoch,'optimizer_state_dict': optimizer.state_dict(),'loss': best_val_loss,'config': {'d_model': D_MODEL, 'num_heads': NUM_HEADS, 'num_layers': NUM_LAYERS,'d_ff': D_FF, 'dropout': DROPOUT,'src_vocab_size': len(src_vocab), 'tgt_vocab_size': len(tgt_vocab),'max_train_lines': MAX_TRAIN_LINES, 'max_valid_lines': MAX_VALID_LINES}}, MODEL_SAVE_PATH)else:print(f'\nEpoch {epoch+1} Summary: Train Loss: {avg_train_loss:.4f}')print(f"Saving model checkpoint to {MODEL_SAVE_PATH}...")torch.save({'model_state_dict': model.state_dict(), 'src_vocab': src_vocab, 'tgt_vocab': tgt_vocab,'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict(), 'loss': avg_train_loss,'config': {'d_model': D_MODEL, 'num_heads': NUM_HEADS, 'num_layers': NUM_LAYERS,'d_ff': D_FF, 'dropout': DROPOUT,'src_vocab_size': len(src_vocab), 'tgt_vocab_size': len(tgt_vocab),'max_train_lines': MAX_TRAIN_LINES, 'max_valid_lines': MAX_VALID_LINES}}, MODEL_SAVE_PATH)print("Training complete on data subset!")
3. predict.py(模型預測)
# predict.py
import torch
import torch.nn as nn
import numpy as np
import sys
import os
import json # Keep json import just in case, though not used directly here# --- Attempt to import necessary components ---
try:from model import Transformer, PositionalEncoding# Import Vocab from the updated train.pyfrom train import Vocab, create_masks # Import create_masks if needed, but translate usually recreates its own simpler masks
except ImportError as e:print(f"Error importing necessary modules: {e}")print("Please ensure model.py and train.py are in the Python path and have the necessary definitions.")sys.exit(1)# --- Configuration ---
# !!! IMPORTANT: Use the path to the model saved by the *new* training script !!!
CHECKPOINT_PATH = 'best_model_subset.pth'
MAX_LENGTH = 60 # Maximum length of generated translation
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print(f"Using device: {DEVICE}")
print(f"Loading checkpoint from: {CHECKPOINT_PATH}")# --- Load Checkpoint and Vocab ---
if not os.path.exists(CHECKPOINT_PATH):print(f"Error: Checkpoint file not found at {CHECKPOINT_PATH}")sys.exit(1)try:checkpoint = torch.load(CHECKPOINT_PATH, map_location=DEVICE)print("Checkpoint loaded successfully.")
except Exception as e:print(f"Error loading checkpoint file: {e}")sys.exit(1)# --- Validate Checkpoint Contents ---
required_keys = ['model_state_dict', 'src_vocab', 'tgt_vocab']
# Also check for 'config' if you saved it, otherwise get params manually
if 'config' in checkpoint:required_keys.append('config')for key in required_keys:if key not in checkpoint:print(f"Error: Required key '{key}' not found in the checkpoint.")sys.exit(1)# --- Extract Vocab and Model Config ---
try:src_vocab = checkpoint['src_vocab']tgt_vocab = checkpoint['tgt_vocab']assert isinstance(src_vocab, Vocab) and isinstance(tgt_vocab, Vocab)PAD_IDX = src_vocab.stoi.get('<pad>', 0) # Use src_vocab pad index# Get model hyperparameters from checkpoint if savedif 'config' in checkpoint:config = checkpoint['config']D_MODEL = config['d_model']NUM_HEADS = config['num_heads']NUM_LAYERS = config['num_layers']D_FF = config['d_ff']DROPOUT = config['dropout']SRC_VOCAB_SIZE = config['src_vocab_size']TGT_VOCAB_SIZE = config['tgt_vocab_size']print("Model configuration loaded from checkpoint.")# Verify vocab sizes match loaded vocabsif SRC_VOCAB_SIZE != len(src_vocab) or TGT_VOCAB_SIZE != len(tgt_vocab):print("Warning: Vocab size in config mismatches loaded vocab length!")print(f"Config Src:{SRC_VOCAB_SIZE}/Tgt:{TGT_VOCAB_SIZE}, Loaded Src:{len(src_vocab)}/Tgt:{len(tgt_vocab)}")# Use lengths from loaded vocabs as they are definitiveSRC_VOCAB_SIZE = len(src_vocab)TGT_VOCAB_SIZE = len(tgt_vocab)else:# !!! Fallback: Manually define parameters - MUST MATCH TRAINING !!!print("Warning: Model config not found in checkpoint. Using manually defined parameters.")print("Ensure these match the parameters used during training!")D_MODEL = 512NUM_HEADS = 8NUM_LAYERS = 6D_FF = 2048DROPOUT = 0.1SRC_VOCAB_SIZE = len(src_vocab) # Use length from loaded vocabTGT_VOCAB_SIZE = len(tgt_vocab) # Use length from loaded vocabprint(f"Source vocab size: {len(src_vocab)}")print(f"Target vocab size: {len(tgt_vocab)}")
except Exception as e:print(f"Error processing vocabulary or config from checkpoint: {e}")sys.exit(1)# --- Initialize Model ---
try:model = Transformer(src_vocab_size=SRC_VOCAB_SIZE,tgt_vocab_size=TGT_VOCAB_SIZE,d_model=D_MODEL,num_heads=NUM_HEADS,num_layers=NUM_LAYERS,d_ff=D_FF,dropout=DROPOUT # Dropout value is less critical for eval mode).to(DEVICE)print("Model initialized.")def count_parameters(model):return sum(p.numel() for p in model.parameters())print(f'The model has {count_parameters(model):,} total parameters.')except Exception as e:print(f"Error initializing the Transformer model: {e}")sys.exit(1)# --- Load Model State ---
try:model.load_state_dict(checkpoint['model_state_dict'])model.eval() # Set model to evaluation modeprint("Model state loaded successfully.")
except RuntimeError as e:print(f"Error loading model state_dict: {e}")print("This *strongly* indicates a mismatch between the loaded checkpoint's architecture")print("(implicit in state_dict keys/shapes) and the model initialized here.")print("Verify that the hyperparameters (D_MODEL, NUM_HEADS, NUM_LAYERS, D_FF, vocab sizes)")print("match *exactly* those used when the checkpoint was saved.")sys.exit(1)
except Exception as e:print(f"An unexpected error occurred while loading model state: {e}")sys.exit(1)# --- Translate Function (largely unchanged, ensure correct mask creation for batch size 1) ---
def translate(sentence: str, model: nn.Module, src_vocab: Vocab, tgt_vocab: Vocab, device: torch.device, max_length: int = 50):"""Translates a source sentence using the trained transformer model."""model.eval() # Ensure model is in eval mode# --- Input Preprocessing ---if not isinstance(sentence, str): return "[Error: Invalid Input Type]"src_sos_idx = src_vocab.stoi.get('<sos>')src_eos_idx = src_vocab.stoi.get('<eos>')src_unk_idx = src_vocab.stoi.get('<unk>', 0) # Default to 0 (usually PAD) if missingsrc_pad_idx = src_vocab.stoi.get('<pad>', 0)if src_sos_idx is None or src_eos_idx is None: return "[Error: Bad Src Vocab]"src_tokens = ['<sos>'] + list(sentence) + ['<eos>']src_ids = [src_vocab.stoi.get(token, src_unk_idx) for token in src_tokens]src_tensor = torch.LongTensor(src_ids).unsqueeze(0).to(device) # Shape: (1, src_len)# --- Create Source Mask ---src_mask = (src_tensor != src_pad_idx).unsqueeze(1).unsqueeze(2).to(device) # Shape: (1, 1, 1, src_len)# --- Encode Source ---with torch.no_grad():try:enc_output = model.encode(src_tensor, src_mask) # Shape: (1, src_len, d_model)except Exception as e:print(f"Error during model encoding: {e}")return "[Error: Encoding Failed]"# --- Decode Target (Greedy Search) ---tgt_sos_idx = tgt_vocab.stoi.get('<sos>')tgt_eos_idx = tgt_vocab.stoi.get('<eos>')tgt_pad_idx = tgt_vocab.stoi.get('<pad>', 0)if tgt_sos_idx is None or tgt_eos_idx is None: return "[Error: Bad Tgt Vocab]"tgt_ids = [tgt_sos_idx] # Start with <sos>for i in range(max_length):tgt_tensor = torch.LongTensor(tgt_ids).unsqueeze(0).to(device) # Shape: (1, current_tgt_len)tgt_len = tgt_tensor.size(1)# --- Create Target Masks (for batch size 1) ---# 1. Target Padding Mask (probably all True here, but good practice)# Shape: (1, 1, tgt_len, 1)tgt_pad_mask = (tgt_tensor != tgt_pad_idx).unsqueeze(1).unsqueeze(-1)# 2. Look-ahead Mask# Shape: (1, tgt_len, tgt_len) -> needs head dim (1, 1, tgt_len, tgt_len)look_ahead_mask = (1 - torch.triu(torch.ones(tgt_len, tgt_len, device=device), diagonal=1)).bool().unsqueeze(0).unsqueeze(0) # Add Batch and Head dim# 3. Combined Target Mask: Shape (1, 1, tgt_len, tgt_len)combined_tgt_mask = tgt_pad_mask & look_ahead_mask# --- Decode Step ---with torch.no_grad():try:# src_mask (1, 1, 1, src_len) broadcasts fine# combined_tgt_mask (1, 1, tgt_len, tgt_len) broadcasts fineoutput = model.decode(tgt_tensor, enc_output, src_mask, combined_tgt_mask)logits = model.fc_out(output[:, -1, :]) # Use only the last output token's logitsexcept Exception as e:print(f"Error during model decoding step {i}: {e}")# Potentially show partial translation?# partial_translation = "".join([tgt_vocab.itos.get(idx, '?') for idx in tgt_ids[1:]]) # Skip SOS# return f"[Error: Decoding Failed at step {i}. Partial: {partial_translation}]"return "[Error: Decoding Failed]"pred_token_id = logits.argmax(1).item()tgt_ids.append(pred_token_id)# Stop if <eos> token is predictedif pred_token_id == tgt_eos_idx:break# --- Post-process Output ---special_indices = {tgt_vocab.stoi.get(tok, -999)for tok in ['<sos>', '<eos>', '<pad>']}# Use get() for safety, default to <unk> if ID somehow not in itostranslated_tokens = [tgt_vocab.itos.get(idx, '<unk>') for idx in tgt_ids if idx not in special_indices]return "".join(translated_tokens)test_sentences = ["Hello!","How are you?","This is a test.","He plays football every weekend.","She has a beautiful dog.","The sun is shining brightly.","I like to read books.","They are going to the park.","My favorite color is blue.","We eat dinner at seven.","The cat sleeps on the mat.","Birds sing in the morning.","He can swim very well.","She writes a letter.","The car is red.","I see a big tree.","They watch television.","My brother is tall.","We learn English at school.","The flowers smell good.","He drinks milk every day.","She helps her mother.","The book is on the table.","I have two pencils.","They live in a small house.","My father works hard.","We play games together.","The moon is bright tonight.","He wears a green shirt.","She dances gracefully.","The fish swims in the water.","I want an apple.","They visit their grandparents.","My sister plays the piano.","We go to bed early.","The sky is clear.","He listens to music.","She draws a nice picture.","The bus stops here.","I feel happy today.","They build a sandcastle.","My friend is kind.","We love to travel.","The baby is crying.","He eats an orange.","She cleans her room.","The door is open.","I can ride a bike.","They run in the field.","My teacher is helpful.","We study science.","The stars are far away.","He tells a funny story.","She wears a pretty dress.","The train is fast.","I understand the lesson.","They sing a happy song.","My shoes are new.","We walk to the store.","The food is delicious.","He reads a newspaper.","She looks at the birds.","The window is closed.","I need some water.","They plant a tree.","My dog likes to play fetch.","We visit the museum.","The weather is warm.","He fixes the broken toy.","She calls her friend.","The grass is green.","I like ice cream.","They go on a holiday.","My mother cooks tasty food.","We have a picnic.","The river flows slowly.","He throws the ball.","She smiles at me.","The mountain is high.","I lost my key.","They help the old man.","My garden is beautiful.","We share our toys.","The answer is simple.","He drives a blue car.","She paints a landscape.","The clock is on the wall.","I am learning to code.","They make a snowman.","My homework is easy.","We clean the house.","The bird has a nest.","He catches a fish.","She studies for the exam.","The bridge is long.","I want to sleep.","They are good friends.","My cat is very playful.","We are going to the beach.","The coffee is hot.","He gives her a gift."
]print("\n--- Starting Translation Examples ---")
for sentence in test_sentences:print("-" * 20)print(f"Input: {sentence}")translation = translate(sentence, model, src_vocab, tgt_vocab, DEVICE, max_length=MAX_LENGTH)print(f"Translation: {translation}")print("-" * 20)
print("Prediction finished.")
predict.py運行結果展示:
root@autodl-container-de94439c34-d719190d:~# python predict.py
Using device: cpu
Loading checkpoint from: best_model_subset.pth
Checkpoint loaded successfully.
Model configuration loaded from checkpoint.
Source vocab size: 2776
Target vocab size: 8209
Model initialized.
The model has 10,451,473 total parameters.
Model state loaded successfully.--- Starting Translation Examples ---
--------------------
Input: Hello!
Translation: 你好!
--------------------
Input: How are you?
Translation: 你怎么樣?
--------------------
Input: This is a test.
Translation: 這是一個測試。
--------------------
Input: He plays football every weekend.
Translation: 他每周都踢足球。
--------------------
Input: She has a beautiful dog.
Translation: 她有一只美麗的狗。
--------------------
Input: The sun is shining brightly.
Translation: 太陽光明亮了。
--------------------
Input: I like to read books.
Translation: 我喜歡讀書。
--------------------
Input: They are going to the park.
Translation: 他們正在去公園。
--------------------
Input: My favorite color is blue.
Translation: 我最喜歡的顏色是藍色。
--------------------
Input: We eat dinner at seven.
Translation: 我們吃晚飯。
--------------------
Input: The cat sleeps on the mat.
Translation: 貓睡在墊上。
--------------------
Input: Birds sing in the morning.
Translation: 鳥在早晨唱歌。
--------------------
Input: He can swim very well.
Translation: 他可以很好地游泳。
--------------------
Input: She writes a letter.
Translation: 她寫信。
--------------------
Input: The car is red.
Translation: 車是紅色的。
--------------------
Input: I see a big tree.
Translation: 我看見一棵大樹。
--------------------
Input: They watch television.
Translation: 他們看電視。
--------------------
Input: My brother is tall.
Translation: 我的哥哥高。
--------------------
Input: We learn English at school.
Translation: 我們學習英語。
--------------------
Input: The flowers smell good.
Translation: 花香氣味好。
--------------------
Input: He drinks milk every day.
Translation: 他每天喝牛奶。
--------------------
Input: She helps her mother.
Translation: 她幫忙媽媽。
--------------------
Input: The book is on the table.
Translation: 這本書是桌子上的。
--------------------
Input: I have two pencils.
Translation: 我有兩個鉛筆。
--------------------
Input: They live in a small house.
Translation: 他們住在一個小房子里。
--------------------
Input: My father works hard.
Translation: 我爸爸爸很努力。
--------------------
Input: We play games together.
Translation: 我們玩游戲。
--------------------
Input: The moon is bright tonight.
Translation: 月亮今晚是明亮的。
--------------------
Input: He wears a green shirt.
Translation: 他穿著綠色的襯衫。
--------------------
Input: She dances gracefully.
Translation: 她很喜歡跳舞。
--------------------
Input: The fish swims in the water.
Translation: 魚在水里游泳。
--------------------
Input: I want an apple.
Translation: 我想要一個蘋果。
--------------------
Input: They visit their grandparents.
Translation: 他們訪問他們的祖父母。
--------------------
Input: My sister plays the piano.
Translation: 我的妹妹打鋼琴。
--------------------
Input: We go to bed early.
Translation: 我們早些時候睡覺。
--------------------
Input: The sky is clear.
Translation: 天空清晰。
--------------------
Input: He listens to music.
Translation: 他聽音樂。
--------------------
Input: She draws a nice picture.
Translation: 她畫了一張美麗的照片。
--------------------
Input: The bus stops here.
Translation: 公共汽車停下來。
--------------------
Input: I feel happy today.
Translation: 今天我感到快樂。
--------------------
Input: They build a sandcastle.
Translation: 他們建造了一個沙子。
--------------------
Input: My friend is kind.
Translation: 我的朋友是個好的。
--------------------
Input: We love to travel.
Translation: 我們喜歡旅行。
--------------------
Input: The baby is crying.
Translation: 這個寶寶正在哭泣。
--------------------
Input: He eats an orange.
Translation: 他吃了一個橙色。
--------------------
Input: She cleans her room.
Translation: 她潔凈房間。
--------------------
Input: The door is open.
Translation: 門開了。
--------------------
Input: I can ride a bike.
Translation: 我可以騎自行車。
--------------------
Input: They run in the field.
Translation: 他們在田里跑。
--------------------
Input: My teacher is helpful.
Translation: 老師很有幫助。
--------------------
Input: We study science.
Translation: 我們研究科學。
--------------------
Input: The stars are far away.
Translation: 星星遠遠遠。
--------------------
Input: He tells a funny story.
Translation: 他告訴一個有趣的故事。
--------------------
Input: She wears a pretty dress.
Translation: 她穿著一件衣服。
--------------------
Input: The train is fast.
Translation: 火車快速。
--------------------
Input: I understand the lesson.
Translation: 我理解課程。
--------------------
Input: They sing a happy song.
Translation: 他們唱了一首快樂的歌。
--------------------
Input: My shoes are new.
Translation: 我的鞋子是新的。
--------------------
Input: We walk to the store.
Translation: 我們走到商店。
--------------------
Input: The food is delicious.
Translation: 食物是美味的。
--------------------
Input: He reads a newspaper.
Translation: 他讀了一篇報紙。
--------------------
Input: She looks at the birds.
Translation: 她看著鳥兒。
--------------------
Input: The window is closed.
Translation: 窗戶閉上了。
--------------------
Input: I need some water.
Translation: 我需要一些水。
--------------------
Input: They plant a tree.
Translation: 他們種了樹。
--------------------
Input: My dog likes to play fetch.
Translation: 我的狗喜歡玩耍。
--------------------
Input: We visit the museum.
Translation: 我們訪問博物館。
--------------------
Input: The weather is warm.
Translation: 天氣暖暖。
--------------------
Input: He fixes the broken toy.
Translation: 他把玩具固定了。
--------------------
Input: She calls her friend.
Translation: 她打電話給她的朋友。
--------------------
Input: The grass is green.
Translation: 草是綠色的。
--------------------
Input: I like ice cream.
Translation: 我喜歡冰淇淋。
--------------------
Input: They go on a holiday.
Translation: 他們一天去度假。
--------------------
Input: My mother cooks tasty food.
Translation: 媽媽的菜吃了香味。
--------------------
Input: We have a picnic.
Translation: 我們有一個野餐。
--------------------
Input: The river flows slowly.
Translation: 河流慢慢慢。
--------------------
Input: He throws the ball.
Translation: 他把球扔了。
--------------------
Input: She smiles at me.
Translation: 她笑著我。
--------------------
Input: The mountain is high.
Translation: 山高。
--------------------
Input: I lost my key.
Translation: 我丟了我的鑰匙。
--------------------
Input: They help the old man.
Translation: 他們幫助老人。
--------------------
Input: My garden is beautiful.
Translation: 我的花園很美麗。
--------------------
Input: We share our toys.
Translation: 我們分享我們的玩具。
--------------------
Input: The answer is simple.
Translation: 答案簡單。
--------------------
Input: He drives a blue car.
Translation: 他駕駛藍色的車。
--------------------
Input: She paints a landscape.
Translation: 她畫了一幅景觀。
--------------------
Input: The clock is on the wall.
Translation: 鐘聲在墻上。
--------------------
Input: I am learning to code.
Translation: 我學習代碼。
--------------------
Input: They make a snowman.
Translation: 他們制造雪人。
--------------------
Input: My homework is easy.
Translation: 我的家庭工作很容易。
--------------------
Input: We clean the house.
Translation: 我們清潔房子。
--------------------
Input: The bird has a nest.
Translation: 鳥兒有巢。
--------------------
Input: He catches a fish.
Translation: 他抓了一只魚。
--------------------
Input: She studies for the exam.
Translation: 她對考試進行研究。
--------------------
Input: The bridge is long.
Translation: 橋長。
--------------------
Input: I want to sleep.
Translation: 我想睡得。
--------------------
Input: They are good friends.
Translation: 他們是好朋友。
--------------------
Input: My cat is very playful.
Translation: 我的貓是非常有趣的。
--------------------
Input: We are going to the beach.
Translation: 我們要到海灘上去。
--------------------
Input: The coffee is hot.
Translation: 咖啡是熱的。
--------------------
Input: He gives her a gift.
Translation: 他給她一個禮物。
--------------------
Prediction finished.