文章目錄
- 因果表征學習
- 因果圖 (Causal Diagram)
- “后門準則”(backdoor criterion)和“前門準則”(frontdoor criterion)
- 后門調整
- Visual Commonsense R-CNN
- Causal Intervention for Weakly-Supervised Semantic Segmentation
- Causal Intervention and Parameter-Free Reasoning for Few-Shot SAR Target Recognition
- A Domain Generalization Network Exploiting Causal Representations and Non-Causal Representations for Three-Phase Converter Fault Diagnosis
- Causal Prototype-Inspired Contrast Adaptation for Unsupervised Domain Adaptive Semantic Segmentation of High-Resolution Remote Sensing Imagery
- Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation
- Generalizable Single-Source Cross-Modality Medical Image Segmentation via Invariant Causal Mechanisms
- Causality-inspired Unsupervised Domain Adaptation with Target Style Imitation for Medical Image Segmentation
- CPI-Parser: Integrating Causal Properties Into Multiple Human Parsing
- Revisiting Few-Shot Learning From a Causal Perspective
- Causal Meta-Transfer Learning for Cross-Domain Few-Shot Hyperspectral Image Classification
因果表征學習
因果圖 (Causal Diagram)
如果整個 DAG 的結構已知且所有的變量都可觀測,那么我們可以根據上面 do 算子的公式算出任意變量之間的因果作用。但是,在絕大多數的實際問題中,我們既不知道整個 DAG 的結構,也不能將所有的變量觀測到。
“后門準則”(backdoor criterion)和“前門準則”(frontdoor criterion)
后門準則:Z可以同時影響or產生 X/Y,那么Z就相當于X/Y因果關系的后門(不影響X-> Y之間,影響兩者),Z也是X/Y的混雜因子
前門準則:Z影響X-> Y的前門路徑(直接影響X->Y)
后門調整
Z在X-> Y的后門路徑上,那么一般會利用do算子進行干預,進行【后門調整】,可以看到這里從do(X) -> (X,z)
Visual Commonsense R-CNN
Causal Intervention for Weakly-Supervised Semantic Segmentation
Causal Intervention and Parameter-Free Reasoning for Few-Shot SAR Target Recognition
A Domain Generalization Network Exploiting Causal Representations and Non-Causal Representations for Three-Phase Converter Fault Diagnosis
Causal Prototype-Inspired Contrast Adaptation for Unsupervised Domain Adaptive Semantic Segmentation of High-Resolution Remote Sensing Imagery
Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation
Generalizable Single-Source Cross-Modality Medical Image Segmentation via Invariant Causal Mechanisms
Causality-inspired Unsupervised Domain Adaptation with Target Style Imitation for Medical Image Segmentation