昇思MindSpore學習筆記2-03 LLM原理和實踐--基于MindSpore通過GPT實現情感分類

摘要:

昇思MindSpore AI框架中使用openai-gpt的方法、步驟。

沒調通,存疑。

一、環境配置

%%capture captured_output
# 實驗環境已經預裝了mindspore==2.2.14,如需更換mindspore版本,可更改下面mindspore的版本號
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 該案例在 mindnlp 0.3.1 版本完成適配,如果發現案例跑不通,可以指定mindnlp版本,執行`!pip install mindnlp==0.3.1`
!pip install mindnlp==0.3.1
!pip install jieba
%env HF_ENDPOINT=https://hf-mirror.com

輸出:

Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: mindnlp==0.3.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (0.3.1)
Requirement already satisfied: mindspore in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (2.2.14)
Requirement already satisfied: tqdm in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (4.66.4)
Requirement already satisfied: requests in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (2.32.3)
Requirement already satisfied: datasets in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (2.20.0)
Requirement already satisfied: evaluate in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.4.2)
Requirement already satisfied: tokenizers in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.19.1)
Requirement already satisfied: safetensors in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.4.3)
Requirement already satisfied: sentencepiece in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.2.0)
Requirement already satisfied: regex in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (2024.5.15)
Requirement already satisfied: addict in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (2.4.0)
Requirement already satisfied: ml-dtypes in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.4.0)
Requirement already satisfied: pyctcdecode in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.5.0)
Requirement already satisfied: jieba in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (0.42.1)
Requirement already satisfied: pytest==7.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindnlp==0.3.1) (7.2.0)
Requirement already satisfied: attrs>=19.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (23.2.0)
Requirement already satisfied: iniconfig in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (2.0.0)
Requirement already satisfied: packaging in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (23.2)
Requirement already satisfied: pluggy<2.0,>=0.12 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (1.5.0)
Requirement already satisfied: exceptiongroup>=1.0.0rc8 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (1.2.0)
Requirement already satisfied: tomli>=1.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pytest==7.2.0->mindnlp==0.3.1) (2.0.1)
Requirement already satisfied: filelock in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (3.15.3)
Requirement already satisfied: numpy>=1.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (1.26.4)
Requirement already satisfied: pyarrow>=15.0.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (16.1.0)
Requirement already satisfied: pyarrow-hotfix in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (0.6)
Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (0.3.8)
Requirement already satisfied: pandas in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (2.2.2)
Requirement already satisfied: xxhash in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (3.4.1)
Requirement already satisfied: multiprocess in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (0.70.16)
Requirement already satisfied: fsspec<=2024.5.0,>=2023.1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets->mindnlp==0.3.1) (2024.5.0)
Requirement already satisfied: aiohttp in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (3.9.5)
Requirement already satisfied: huggingface-hub>=0.21.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (0.23.4)
Requirement already satisfied: pyyaml>=5.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from datasets->mindnlp==0.3.1) (6.0.1)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.3.1) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.3.1) (3.7)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.3.1) (2.2.2)
Requirement already satisfied: certifi>=2017.4.17 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from requests->mindnlp==0.3.1) (2024.6.2)
Requirement already satisfied: protobuf>=3.13.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (5.27.1)
Requirement already satisfied: asttokens>=2.0.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (2.0.5)
Requirement already satisfied: pillow>=6.2.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (10.3.0)
Requirement already satisfied: scipy>=1.5.4 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (1.13.1)
Requirement already satisfied: psutil>=5.6.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (5.9.0)
Requirement already satisfied: astunparse>=1.6.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from mindspore->mindnlp==0.3.1) (1.6.3)
Requirement already satisfied: pygtrie<3.0,>=2.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.3.1) (2.5.0)
Requirement already satisfied: hypothesis<7,>=6.14 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pyctcdecode->mindnlp==0.3.1) (6.104.2)
Requirement already satisfied: six in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from asttokens>=2.0.4->mindspore->mindnlp==0.3.1) (1.16.0)
Requirement already satisfied: wheel<1.0,>=0.23.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from astunparse>=1.6.3->mindspore->mindnlp==0.3.1) (0.43.0)
Requirement already satisfied: aiosignal>=1.1.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.3.1) (1.3.1)
Requirement already satisfied: frozenlist>=1.1.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.3.1) (1.4.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.3.1) (6.0.5)
Requirement already satisfied: yarl<2.0,>=1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.3.1) (1.9.4)
Requirement already satisfied: async-timeout<5.0,>=4.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from aiohttp->datasets->mindnlp==0.3.1) (4.0.3)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from huggingface-hub>=0.21.2->datasets->mindnlp==0.3.1) (4.11.0)
Requirement already satisfied: sortedcontainers<3.0.0,>=2.1.0 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from hypothesis<7,>=6.14->pyctcdecode->mindnlp==0.3.1) (2.4.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.3.1) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.3.1) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (from pandas->datasets->mindnlp==0.3.1) (2024.1)[notice] A new release of pip is available: 24.1 -> 24.1.1
[notice] To update, run: python -m pip install --upgrade pip
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: jieba in /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages (0.42.1)[notice] A new release of pip is available: 24.1 -> 24.1.1
[notice] To update, run: python -m pip install --upgrade pip
env: HF_ENDPOINT=https://hf-mirror.com

導入os mindspore dataset nn _legacy等模塊

import os
?
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn
?
from mindnlp.dataset import load_dataset
?
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy

輸出:

Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.027 seconds.
Prefix dict has been built successfully.

二、加載訓練數據集和測試數據集

imdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']

輸出:

Downloading?readme:--?7.81k/??[00:00<00:00,?478kB/s]
Downloading?data:?100%----------------?21.0M/21.0M?[00:09<00:00,?2.43MB/s]
Downloading?data:?100%----------------?20.5M/20.5M?[00:10<00:00,?1.95MB/s]
Downloading?data:?100%----------------?42.0M/42.0M?[00:16<00:00,?2.69MB/s]
Generating?train?split:?100%----------------?25000/25000?[00:00<00:00,?102317.15?examples/s]
Generating?test?split:?100%----------------?25000/25000?[00:00<00:00,?130128.57?examples/s]
Generating?unsupervised?split:?100%----------------?50000/50000?[00:00<00:00,?140883.29?examples/s]

imdb_train.get_dataset_size()

輸出:

25000

三、預處理數據集

import numpy as np
?
def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):is_ascend = mindspore.get_context('device_target') == 'Ascend'def tokenize(text):if is_ascend:tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)else:tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)return tokenized['input_ids'], tokenized['attention_mask']
?if shuffle:dataset = dataset.shuffle(batch_size)
?# map dataset
dataset = dataset.map(operations=[tokenize], input_columns="text", 
output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), 
input_columns="label", output_columns="labels")# batch datasetif is_ascend:dataset = dataset.batch(batch_size)else:dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),'attention_mask': (None, 0)})
?return dataset

from mindnlp.transformers import GPTTokenizer
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')
?
# add sepcial token: <PAD>
special_tokens_dict = {"bos_token": "<bos>","eos_token": "<eos>","pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)

輸出:

連接失敗,不知是否openai關閉服務的原因。

【從此往下,執行不下去了】

100%----------------?25.0/25.0?[00:00<00:00,?2.39kB/s]----------------?533k/0.00?[00:35<00:00,?49.3kB/s]
Failed to download: HTTPSConnectionPool(host='hf-mirror.com', port=443): Read timed out.
Retrying... (attempt 0/5)----------------?263k/0.00?[00:08<00:00,?57.6kB/s]----------------?378k/0.00?[00:41<00:00,?5.35kB/s]
Failed to download: HTTPSConnectionPool(host='hf-mirror.com', port=443): Read timed out.
Retrying... (attempt 0/5)----------------?69.6k/0.00?[00:01<00:00,?35.7kB/s]----------------?684k/0.00?[00:45<00:00,?8.49kB/s]
Failed to download: HTTPSConnectionPool(host='hf-mirror.com', port=443): Read timed out.
Retrying... (attempt 0/5)----------------?559k/0.00?[00:36<00:00,?27.3kB/s]----------------?656/??[00:00<00:00,?62.5kB/s]

# split train dataset into train and valid datasets
imdb_train, imdb_val = imdb_train.split([0.7, 0.3])
dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)
dataset_val   = process_dataset(imdb_val, gpt_tokenizer)
dataset_test  = process_dataset(imdb_test, gpt_tokenizer)

next(dataset_train.create_tuple_iterator())

輸出:

[Tensor(shape=[4, 512], dtype=Int64, value=[[   11,   250,    15 ...     3,   242,     3],[    5,    23,     5 ... 40480, 40480, 40480],[   14,     3,     5 ...   243,     8, 18073],[    7,   250,     3 ... 40480, 40480, 40480]]),Tensor(shape=[4, 512], dtype=Int64, value=[[1, 1, 1 ... 1, 1, 1],[1, 1, 1 ... 0, 0, 0],[1, 1, 1 ... 1, 1, 1],[1, 1, 1 ... 0, 0, 0]]),Tensor(shape=[4], dtype=Int32, value= [0, 1, 0, 1])]

from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)metric = Accuracy()# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)trainer = Trainer(network=model, train_dataset=dataset_train,eval_dataset=dataset_train, metrics=metric,epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],jit=False)

輸出:

100%----------------??457M/457M?[04:06<00:00,?2.87MB/s]
100%----------------??74.0/74.0?[00:00<00:00,?4.28kB/s]

四、訓練

trainer.run(tgt_columns="labels")

五、評估

evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/diannao/43240.shtml
繁體地址,請注明出處:http://hk.pswp.cn/diannao/43240.shtml
英文地址,請注明出處:http://en.pswp.cn/diannao/43240.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

Autogen智能體實戰-Autogen框架介紹

文章目錄 一&#xff0c;Autogen簡介二&#xff0c;Autogen原理1&#xff0c;Autogen原理圖解2&#xff0c;拆解Autogen是如何完成繪制特斯拉股票趨勢圖的 這篇文章介紹一個開源的Agent框架-微軟的Autogen。 一&#xff0c;Autogen簡介 官網:https://microsoft.github.io/aut…

前端頁面操作防抖函數封裝及應用

1、使用背景 函數防抖其實是作為一名前端同學必備的技能了&#xff0c;之前一直偷懶都借用頁面loading或者按鈕loading來實現。最近在開發微信小程序&#xff0c;過多的loading會帶來不好的體驗&#xff0c;同時在跳轉頁面的時候&#xff0c;不好用loading來防抖。所以就會出現…

【Unity】RPG2D龍城紛爭(九)戰斗系統之角色移動

更新日期:2024年7月8日。 項目源碼:第五章發布(正式開始游戲邏輯的章節) 索引 簡介一、角色戰斗狀態二、角色移動1.角色起飛(移動前)2.角色降落(移動后)3.生成移動路徑4.角色移動三、整合簡介 之前的章節做了這么多準備工作,現在終于要進入我們最為核心的戰斗系統的編…

在idea中查看某個接口的所有實現類圖

一、選中某個接口右鍵 ---> Diagrams ---> show Diagrams&#xff0c;然后就會進入一個新的 tab 頁&#xff1b; 二、然后在出來的圖上選中某個接口右鍵 ---> show Implementations&#xff0c;就會顯示選中接口的所有實現類列表&#xff1b; 三、最后 ctrl A 全部選…

Defender Cloud Apps部署方案

目錄 Defender Cloud Apps是什么? Defender Cloud Apps&#xff1a;保護您的云應用程序免受威脅 1. 全面的云應用發現與評估 2. 實時的用戶活動監控 3. 深度的數據保護 4. 合規性管理與報告 5. 統一的安全管理 Defender Cloud Apps主要功能 1. 可見性和洞察 2. 數據保…

uniapp父頁面調用子頁面 組件方法記錄

文章目錄 導文如何點擊父頁面&#xff0c;觸發子頁面函數先寫一個子頁面的基礎內容父元素 如何點擊父頁面&#xff0c;修改子頁面的值先寫一個子頁面的基礎內容父元素 導文 如何點擊父頁面&#xff0c;觸發子頁面函數&#xff1f; 如何點擊父頁面&#xff0c;修改子頁面的值&am…

英區PayPal賬號3分鐘綁定WISE英鎊的銀行收款賬戶

正文開始&#xff0c;我們先登錄英區PayPal賬號后 有很多銀行給我們選擇&#xff0c;但是沒有WISE的選項&#xff0c;所以我們手動輸入“WISE”&#xff0c;然后如下圖所示點擊“Enter Your Bank Detailds”輸入銀行詳細信息按鈕。 然后輸入我們的WISE英鎊賬戶的收款銀行信息&a…

Advanced Electronic Materials:磁性智能皮膚作為人機界面

近年來&#xff0c;電子可穿戴設備的普及率迅速上升&#xff0c;柔性可穿戴設備因其高生物相容性、功能性、適應性和低成本而在人機界面上引起了極大的關注。柔性磁性智能皮膚是這一快速發展的柔性可穿戴電子領域的一部分&#xff0c;為人類感知發展開辟了一條新的道路。磁感是…

SpringCloud第一篇Docker基礎

文章目錄 一、常見命令二、數據卷三、數據掛載四、自定義鏡像五、網絡 一、常見命令 Docker最常見的命令就是操作鏡像、容器的命令&#xff0c;詳見官方文檔&#xff1a; https://docs.docker.com/ 需求&#xff1a; 在DockerHub中搜索Nginx鏡像&#xff0c;查看鏡像的名稱 …

k8s集群如kubeadm init和kube-flannel.yam問題

查看k8s中角色內容kubectl get all (顯示pod和server以及delment) 刪除應用資源選擇刪除先刪除部署查看部署和pod沒了服務還在&#xff0c;但資源和功能以及刪除&#xff0c;刪除服務kubectl delete 服務名&#xff08;部署名&#xff09;&#xff0c;get pods 獲取默認空間的容…

A133 Android10 root修改

1.前言 客戶應用需求root相關的權限&#xff0c;我們需要修改系統的權限才可以滿足客戶需求 2.修改方法 frameworks層&#xff1a;注釋掉 diff --git a/frameworks/base/core/jni/com_android_internal_os_Zygote.cpp b/frameworks/base/core/jni/com_android_internal_os_…

從資金到未來:技術融資如何重塑IT顧問在AI與網絡安全的角色?

一方面是人工智能 &#xff08;AI&#xff09; 和機器學習 &#xff08;ML&#xff09; 的雙引擎&#xff0c;另一方面是網絡安全和數據泄露威脅中不斷變化的威脅形勢&#xff0c;IT 格局正在經歷翻天覆地的變化。這場數字革命對 IT 顧問來說既是挑戰也是機遇&#xff0c;但要成…

三級_網絡技術_09_IP地址規劃技術

1.某企業產品部的IP地址塊為211.168.15.192/26&#xff0c;市場部的為211.168.15.160/27&#xff0c;財務部的為211.168.15.128/27&#xff0c;這三個地址塊經聚合后的地址為()。 211.168.15.0/25 211.168.15.0/26 211.168.15.128/25 211.168.15.128/26 2.若某大學分配給計…

低代碼開發在金融系統中的應用研究

低代碼開發在金融系統中的實施策略 在金融行業&#xff0c;系統的穩定性、安全性以及數據的完整性是至關重要的考慮要素。因此&#xff0c;低代碼開發策略在金融系統中的應用必須遵循一系列精細且嚴格的實施準則。 明確且精準的業務需求分析是基礎。金融系統的復雜性意味著在開…

解決計算機中mfc140u.dll沒有被指定在windows上運行

在打開電腦軟件時候出現mfc140u.dll丟失或找不到mfc140u.dll怎么辦&#xff1f;遇到這個問題相當困擾&#xff0c;mfc140u.dll到底是什么&#xff1f;為什么會出現這個情況&#xff0c;相信很多人都不知道&#xff0c;今天我給大家詳細介紹一下mfc140u.dll是什么&#xff0c;為…

【C++修行之道】string類的使用

目錄 一.C語言中的字符串 二、標準庫中的string類 (了解) 2.1 string類(了解) 2.2 幫助文檔閱讀 三、 string類的常用接口說明 3.1 string類對象的常見構造 3.2 string類對象的容量操作 3.3 string類對象的訪問及遍歷操作 字符串類的簡單實現 3.4 string類對象的修改…

【論文閱讀筆記】ASPS: Augmented Segment Anything Model for Polyp Segmentation

1.論文介紹 ASPS: Augmented Segment Anything Model for Polyp Segmentation ASPS&#xff1a;用于息肉分割的擴展SAM模型 2024年 arxiv Paper Code 2.摘要 息肉分割在結直腸癌診斷中起著至關重要的作用。最近&#xff0c;Segment Anything Model(SAM)的出現利用其在大規模…

視頻壓縮軟件哪個壓縮最小,視頻用什么軟件壓縮最小

在數字媒體時代&#xff0c;視頻內容的生產與分享已成為生活常態。但隨之而來的問題就是&#xff0c;大視頻文件占用過多存儲空間&#xff0c;上傳和分享也變得不便。本文將為你揭示如何將視頻壓縮到最小&#xff0c;同時保持畫質清晰。讓我們一起探索吧&#xff01; 下載并文件…

剪輯抽幀技巧有哪些 剪輯抽幀怎么做視頻 剪輯抽幀補幀怎么操作 剪輯抽幀有什么用 視頻剪輯哪個軟件好用在哪里學

打破視頻節奏&#xff0c;讓作品告別平庸。抽幀剪輯可以改變視頻敘事節奏&#xff0c;人為制造沖突、轉折、卡頓的效果。這種剪輯方式&#xff0c;不僅可以推進劇情發展&#xff0c;還能吸引觀眾的注意力&#xff0c;有效防止觀影疲勞。有關剪輯抽幀技巧有哪些&#xff0c;剪輯…

python中 is 的意義和用法

在Python中&#xff0c;is 是一個關鍵字&#xff0c;用于比較兩個對象的身份&#xff08;即它們是否是同一個對象&#xff09;。如果兩個對象是同一個對象&#xff0c;is 將返回 True&#xff1b;否則返回 False。這與比較兩個對象的值是否相等的 操作符不同。 基本用法 a …