位置http://localhost:8888/notebooks/Untitled1-Copy1.ipynb
# -*- coding: utf-8 -*-
"""
MUSED-I康復評估系統(增強版)
包含:多通道sEMG數據增強、混合模型架構、標準化處理
"""
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from collections import defaultdict
import tensorflow as tf# 隨機種子設置
SEED = 42
np.random.seed(SEED)
tf.random.set_seed(SEED)
# -------------------- 第一部分:數據增強器 --------------------
class SEMGDataGenerator:"""sEMG數據增強器(支持多通道)增強策略:- 分通道時間扭曲- 通道獨立噪聲添加- 幅度縮放- 通道偏移"""def __init__(self, noise_scale=0.2, stretch_range=(0.6, 1.4)):# 增強噪聲強度和時間扭曲范圍self.noise_scale = noise_scaleself.stretch_range = stretch_rangedef channel_dropout(self, signals, max_drop=2):"""隨機屏蔽部分通道"""drop_mask = np.random.choice(signals.shape[1], max_drop, replace=False)signals[:, drop_mask] = 0return signalsdef time_warp(self, signals):"""時間扭曲(分通道處理)"""orig_length = signals.shape[0]scale = np.random.uniform(*self.stretch_range)new_length = int(orig_length * scale)x_orig = np.linspace(0, 1, orig_length)x_new = np.linspace(0, 1, new_length)warped = np.zeros_like(signals)for c in range(signals.shape[1]): # 分通道處理warped_single = np.interp(x_new, x_orig, signals[:, c])if new_length >= orig_length:warped[:, c] = warped_single[:orig_length]else:padded = np.zeros(orig_length)padded[:new_length] = warped_singlewarped[:, c] = paddedreturn warpeddef add_noise(self, signals):"""添加高斯噪聲(通道獨立)"""# 每個通道獨立生成噪聲noise = np.zeros_like(signals)for c in range(signals.shape[1]):channel_std = np.std(signals[:, c])noise[:, c] = np.random.normal(scale=self.noise_scale*channel_std, size=signals.shape[0])return signals + noisedef amplitude_scale(self, signals):"""幅度縮放(全通道同步)"""scale = np.random.uniform(0.7, 1.3)return signals * scaledef channel_shift(self, signals):"""通道偏移(循環平移)"""shift = np.random.randint(-3, 3)return np.roll(signals, shift, axis=1) # 沿通道軸偏移def augment(self, window):"""應用至少一種增強策略"""aug_window = window.copy()applied = Falseattempts = 0 # 防止無限循環# 嘗試應用直到至少成功一次(最多嘗試5次)while not applied and attempts < 5:if np.random.rand() > 0.5:aug_window = self.time_warp(aug_window)applied = Trueif np.random.rand() > 0.5:aug_window = self.add_noise(aug_window)applied = Trueif np.random.rand() > 0.5:aug_window = self.amplitude_scale(aug_window)applied = Trueif np.random.rand() > 0.5:window = np.flip(window, axis=0) if np.random.rand() > 0.5:aug_window = self.channel_shift(aug_window)applied = Trueattempts += 1return aug_window
# -------------------- 第二部分:數據處理管道 --------------------
def load_and_preprocess(file_path, label, window_size=100, augment_times=5):"""完整數據處理流程參數:file_path: CSV文件路徑label: 數據標簽 (1.0=健康人, 0.0=患者)window_size: 時間窗口長度(單位:采樣點)augment_times: 每個樣本的增強次數返回:features: 形狀 (n_samples, window_size, n_channels)labels: 形狀 (n_samples,)"""# 1. 數據加載df = pd.read_csv(file_path, usecols=range(8))#df = df.dropna() # 確保只讀取前8列print("前8列統計描述:\n", df.describe())# 檢查是否存在非數值或缺失值if df.isnull().any().any():print("發現缺失值,位置:\n", df.isnull().sum())df.fillna(method='ffill', inplace=True) # 可以考慮前向填充或均值填充,而非直接刪除if df.isnull().any().any(): # 如果仍有NaN(例如開頭就是NaN),再刪除df.dropna(inplace=True)print("刪除含缺失值的行后形狀:", df.shape)# 檢查無窮大值if np.isinf(df.values).any():print("發現無窮大值,將其替換為NaN并刪除行。")df = df.replace([np.inf, -np.inf], np.nan).dropna()print("刪除含無窮大值的行后形狀:", df.shape)df = df.astype(np.float64) # 確保數據類型正確print(f"[1/5] 數據加載完成 | 原始數據形狀: {df.shape}")# 2. 窗口分割windows = []step = window_size // 2 # 50%重疊n_channels = 8 # 假設前8列為sEMG信號for start in range(0, len(df)-window_size+1, step):end = start + window_sizewindow = df.iloc[start:end, :n_channels].values # (100,8)# 維度校驗if window.ndim == 1:window = window.reshape(-1, 1)elif window.shape[1] != n_channels:raise ValueError(f"窗口通道數異常: {window.shape}")windows.append(window)print(f"[2/5] 窗口分割完成 | 總窗口數: {len(windows)} | 窗口形狀: {windows[0].shape}")# 3. 數據增強generator = SEMGDataGenerator(noise_scale=0.05)augmented = []for w in windows:augmented.append(w)for _ in range(augment_times):try:aug_w = generator.augment(w)# 檢查增強結果if not np.isfinite(aug_w).all():raise ValueError("增強生成無效值")augmented.append(aug_w)except Exception as e:print(f"增強失敗: {e}")continueprint(f"[3/5] 數據增強完成 | 總樣本數: {len(augmented)} (原始x{augment_times+1})")# 4. 形狀一致性校驗expected_window_shape = (window_size, n_channels) # 明確期望的形狀filtered = [arr for arr in augmented if arr.shape == expected_window_shape]if len(filtered) < len(augmented):print(f"警告: 過濾掉 {len(augmented) - len(filtered)} 個形狀不符合 {expected_window_shape} 的增強樣本。")print(f"[4/5] 形狀過濾完成 | 有效樣本率: {len(filtered)}/{len(augmented)}")# 轉換為數組features = np.stack(filtered)assert not np.isnan(features).any(), "增強數據中存在NaN"assert not np.isinf(features).any(), "增強數據中存在Inf"labels = np.full(len(filtered), label)return features, labels
# -------------------- 第三部分:標準化與數據集劃分 --------------------
def channel_standardize(data):"""逐通道標準化"""# data形狀: (samples, timesteps, channels)mean = np.nanmean(data, axis=(0,1), keepdims=True)std = np.nanstd(data, axis=(0,1), keepdims=True)# 防止除零錯誤:若標準差為0,設置為1std_fixed = np.where(std == 0, 1.0, std)return (data - mean) / (std_fixed + 1e-8)
# -------------------- 執行主流程 --------------------
if __name__ == "__main__":# 數據加載與增強X_healthy, y_healthy = load_and_preprocess('Healthy_Subjects_Data3_DOF.csv', label=1.0,window_size=100,augment_times=5)X_patient, y_patient = load_and_preprocess('Stroke_Patients_DataPatient1_3DOF.csv',label=0.0,window_size=100,augment_times=5)# 合并數據集X = np.concatenate([X_healthy, X_patient], axis=0)y = np.concatenate([y_healthy, y_patient], axis=0)print(f"\n合并數據集形狀: X{X.shape} y{y.shape}")# 數據標準化X = channel_standardize(X)# 數據集劃分X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y,random_state=SEED)print("\n最終數據集:")print(f"訓練集: {X_train.shape} | 0類樣本數: {np.sum(y_train==0)}")print(f"驗證集: {X_val.shape} | 1類樣本數: {np.sum(y_val==1)}")# 驗證標準化效果sample_channel = 0print(f"\n標準化驗證 (通道{sample_channel}):")print(f"均值: {np.mean(X_train[:, :, sample_channel]):.2f} (±{np.std(X_train[:, :, sample_channel]):.2f})")
from tensorflow.keras import layers, optimizers, callbacks, Model
# -------------------- 第三部分:模型架構 --------------------
def build_model(input_shape):"""混合CNN+BiGRU模型"""inputs = layers.Input(shape=input_shape)# 特征提取分支x = layers.Conv1D(32, 15, activation='relu', padding='same', kernel_regularizer='l2')(inputs) # 添加L2正則化x = layers.MaxPooling1D(2)(x)x = layers.Dropout(0.3)(x) # 添加Dropoutx = layers.Conv1D(64, 7, activation='relu', padding='same')(x)x = layers.MaxPooling1D(2)(x)x = layers.Bidirectional(layers.GRU(32, return_sequences=True))(x)x = layers.Dropout(0.3)(x) # 第二層Dropout# 差異注意力機制attention = layers.Attention()([x, x])x = layers.Concatenate()([x, attention])# 回歸輸出層x = layers.GlobalAveragePooling1D()(x)x = layers.Dense(16, activation='relu')(x)outputs = layers.Dense(1, activation='sigmoid')(x)model = tf.keras.Model(inputs, outputs)return model# 初始化模型
model = build_model(input_shape=(100, 8))
model.compile(optimizer=optimizers.Adam(learning_rate=0.001),loss='binary_crossentropy',metrics=['accuracy', tf.keras.metrics.AUC(name='auc')]
)
model.summary()
import matplotlib.pyplot as plt
# -------------------- 第四部分:模型訓練 --------------------
# 定義回調
early_stop = callbacks.EarlyStopping(monitor='val_auc', patience=10,mode='max',restore_best_weights=True
)# 訓練模型
history = model.fit(X_train, y_train,validation_data=(X_val, y_val),epochs=100,batch_size=32,callbacks=[early_stop],verbose=1
)
# -------------------- 第五部分:康復評估與可視化 --------------------
# 改進后的可視化和報告生成
# ... (訓練過程可視化部分不變) ...# 確保在調用 generate_report 之前有足夠的子圖空間
# 比如在 train_test_split 之后或者在 model.fit 之后
# 可以將整體可視化邏輯放到一個主函數中,或者明確創建 figure 和 axes
plt.figure(figsize=(18, 6)) # 增加figure大小以容納更多圖表
plt.subplot(1, 3, 1)
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Loss Curve')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()plt.subplot(1, 3, 2)
plt.plot(history.history['accuracy'], label='Train Accuracy') # 也可以加上準確率
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.plot(history.history['auc'], label='Train AUC')
plt.plot(history.history['val_auc'], label='Validation AUC')
plt.title('Performance Metrics')
plt.xlabel('Epoch')
plt.ylabel('Value')
plt.legend()# 生成康復報告
def generate_report(model, patient_data):"""生成定量康復評估報告"""# 預測所有窗口#predictions = model.predict(patient_data).flatten()# 計算康復指數(0-100%)#recovery_index = np.mean(predictions) * 100predictions = model.predict(patient_data).flatten()recovery_index = (1 - np.mean(predictions)) * 100 # 可視化預測分布plt.subplot(133)plt.hist(predictions, bins=20, alpha=0.7)plt.axvline(x=np.mean(predictions), color='red', linestyle='--')plt.title('Prediction Distribution\nMean R-index: %.1f%%' % recovery_index)# 可視化預測分布到傳入的ax上# 生成文字報告print(f"""======== 智能康復評估報告 ========分析窗口總數:{len(patient_data)}平均康復指數:{recovery_index:.1f}%最佳窗口表現:{np.max(predictions)*100:.1f}%最弱窗口表現:{np.min(predictions)*100:.1f}%--------------------------------臨床建議:{ "建議加強基礎動作訓練" if recovery_index <40 else "建議進行中等強度康復訓練" if recovery_index <70 else "建議開展精細動作訓練" if recovery_index <90 else "接近健康水平,建議維持訓練"}""")
X_patient
# 使用患者數據生成報告
generate_report(model, X_patient)plt.tight_layout()
plt.show()
前8列統計描述:0 -2 -2.1 -3 -1 \ count 14970.000000 14970.000000 14970.000000 14970.000000 14970.000000 mean -0.867602 -1.022044 -1.174883 -1.057315 -0.926921 std 4.919823 8.380565 20.082498 11.550257 6.344825 min -128.000000 -128.000000 -128.000000 -128.000000 -92.000000 25% -3.000000 -3.000000 -3.000000 -3.000000 -3.000000 50% -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 75% 1.000000 2.000000 1.000000 2.000000 1.000000 max 80.000000 79.000000 127.000000 127.000000 116.000000 -2.2 -1.1 -2.3 count 14970.000000 14970.000000 14970.000000 mean -0.824916 -0.888377 -0.901804 std 10.461558 7.863457 12.304696 min -128.000000 -128.000000 -128.000000 25% -3.000000 -3.000000 -3.000000 50% -1.000000 -1.000000 -1.000000 75% 1.000000 1.000000 1.000000 max 127.000000 127.000000 127.000000 發現缺失值,位置:0 354 -2 354 -2.1 354 -3 354 -1 354 -2.2 354 -1.1 354 -2.3 354 dtype: int64 [1/5] 數據加載完成 | 原始數據形狀: (15324, 8) [2/5] 窗口分割完成 | 總窗口數: 305 | 窗口形狀: (100, 8) [3/5] 數據增強完成 | 總樣本數: 1830 (原始x6) [4/5] 形狀過濾完成 | 有效樣本率: 1830/1830 前8列統計描述:-1 -1.1 2 -1.2 -1.3 \ count 14970.000000 14970.000000 14970.000000 14970.000000 14970.000000 mean -1.065531 -0.838009 -2.973747 -0.028925 -0.857916 std 33.651163 17.704589 49.101199 34.155909 13.400751 min -128.000000 -128.000000 -128.000000 -128.000000 -128.000000 25% -8.000000 -6.000000 -13.000000 -7.000000 -5.000000 50% -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 75% 6.000000 5.000000 6.000000 6.000000 4.000000 max 127.000000 127.000000 127.000000 127.000000 89.000000 3 0 -6 count 14970.000000 14970.000000 14970.000000 mean -0.868003 -0.794990 -0.784636 std 12.125684 12.950926 20.911681 min -73.000000 -128.000000 -128.000000 25% -6.000000 -6.000000 -5.000000 50% 0.000000 -1.000000 -1.000000 75% 5.000000 4.000000 4.000000 max 85.000000 127.000000 127.000000 發現缺失值,位置:-1 10 -1.1 10 2 10 -1.2 10 -1.3 10 3 10 0 10 -6 10 dtype: int64 [1/5] 數據加載完成 | 原始數據形狀: (14980, 8) [2/5] 窗口分割完成 | 總窗口數: 298 | 窗口形狀: (100, 8)C:\Users\guoxi\AppData\Local\Temp\ipykernel_32276\2631219684.py:22: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.df.fillna(method='ffill', inplace=True) # 可以考慮前向填充或均值填充,而非直接刪除 C:\Users\guoxi\AppData\Local\Temp\ipykernel_32276\2631219684.py:22: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.df.fillna(method='ffill', inplace=True) # 可以考慮前向填充或均值填充,而非直接刪除[3/5] 數據增強完成 | 總樣本數: 1788 (原始x6) [4/5] 形狀過濾完成 | 有效樣本率: 1788/1788合并數據集形狀: X(3618, 100, 8) y(3618,)最終數據集: 訓練集: (2894, 100, 8) | 0類樣本數: 1430 驗證集: (724, 100, 8) | 1類樣本數: 366標準化驗證 (通道0): 均值: -0.00 (±1.00)
Epoch 1/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 3s 11ms/step - accuracy: 0.6770 - auc: 0.7914 - loss: 0.6707 - val_accuracy: 0.8550 - val_auc: 0.9253 - val_loss: 0.4116 Epoch 2/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.8780 - auc: 0.9416 - loss: 0.3534 - val_accuracy: 0.9047 - val_auc: 0.9750 - val_loss: 0.2717 Epoch 3/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - accuracy: 0.9208 - auc: 0.9734 - loss: 0.2469 - val_accuracy: 0.9171 - val_auc: 0.9774 - val_loss: 0.2604 Epoch 4/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9331 - auc: 0.9800 - loss: 0.2262 - val_accuracy: 0.9240 - val_auc: 0.9843 - val_loss: 0.2364 Epoch 5/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9407 - auc: 0.9854 - loss: 0.2024 - val_accuracy: 0.8950 - val_auc: 0.9773 - val_loss: 0.3147 Epoch 6/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - accuracy: 0.9476 - auc: 0.9869 - loss: 0.1952 - val_accuracy: 0.9475 - val_auc: 0.9922 - val_loss: 0.1946 Epoch 7/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9603 - auc: 0.9913 - loss: 0.1624 - val_accuracy: 0.9365 - val_auc: 0.9888 - val_loss: 0.1864 Epoch 8/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9688 - auc: 0.9949 - loss: 0.1349 - val_accuracy: 0.9461 - val_auc: 0.9916 - val_loss: 0.2021 Epoch 9/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9573 - auc: 0.9940 - loss: 0.1433 - val_accuracy: 0.9530 - val_auc: 0.9930 - val_loss: 0.1688 Epoch 10/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9686 - auc: 0.9961 - loss: 0.1302 - val_accuracy: 0.9586 - val_auc: 0.9923 - val_loss: 0.1617 Epoch 11/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9790 - auc: 0.9965 - loss: 0.1094 - val_accuracy: 0.9392 - val_auc: 0.9856 - val_loss: 0.2092 Epoch 12/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9577 - auc: 0.9913 - loss: 0.1587 - val_accuracy: 0.9544 - val_auc: 0.9940 - val_loss: 0.1531 Epoch 13/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9806 - auc: 0.9967 - loss: 0.1031 - val_accuracy: 0.9475 - val_auc: 0.9821 - val_loss: 0.2452 Epoch 14/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9724 - auc: 0.9960 - loss: 0.1222 - val_accuracy: 0.9489 - val_auc: 0.9899 - val_loss: 0.1961 Epoch 15/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9761 - auc: 0.9973 - loss: 0.1089 - val_accuracy: 0.9544 - val_auc: 0.9881 - val_loss: 0.1804 Epoch 16/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9769 - auc: 0.9974 - loss: 0.1057 - val_accuracy: 0.9461 - val_auc: 0.9922 - val_loss: 0.1801 Epoch 17/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9799 - auc: 0.9970 - loss: 0.1063 - val_accuracy: 0.9503 - val_auc: 0.9909 - val_loss: 0.1773 Epoch 18/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9765 - auc: 0.9982 - loss: 0.1010 - val_accuracy: 0.9599 - val_auc: 0.9907 - val_loss: 0.1759 Epoch 19/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9850 - auc: 0.9987 - loss: 0.0890 - val_accuracy: 0.9641 - val_auc: 0.9941 - val_loss: 0.1507 Epoch 20/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - accuracy: 0.9823 - auc: 0.9970 - loss: 0.1011 - val_accuracy: 0.9599 - val_auc: 0.9937 - val_loss: 0.1587 Epoch 21/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9855 - auc: 0.9992 - loss: 0.0807 - val_accuracy: 0.9655 - val_auc: 0.9944 - val_loss: 0.1463 Epoch 22/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9782 - auc: 0.9980 - loss: 0.0978 - val_accuracy: 0.9599 - val_auc: 0.9914 - val_loss: 0.1650 Epoch 23/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9918 - auc: 0.9992 - loss: 0.0749 - val_accuracy: 0.9530 - val_auc: 0.9963 - val_loss: 0.1473 Epoch 24/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9896 - auc: 0.9991 - loss: 0.0774 - val_accuracy: 0.9599 - val_auc: 0.9959 - val_loss: 0.1497 Epoch 25/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - accuracy: 0.9851 - auc: 0.9988 - loss: 0.0828 - val_accuracy: 0.9627 - val_auc: 0.9921 - val_loss: 0.1506 Epoch 26/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9861 - auc: 0.9989 - loss: 0.0844 - val_accuracy: 0.9544 - val_auc: 0.9846 - val_loss: 0.2111 Epoch 27/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9689 - auc: 0.9974 - loss: 0.1095 - val_accuracy: 0.9682 - val_auc: 0.9963 - val_loss: 0.1233 Epoch 28/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9904 - auc: 0.9994 - loss: 0.0685 - val_accuracy: 0.9613 - val_auc: 0.9930 - val_loss: 0.1476 Epoch 29/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9885 - auc: 0.9993 - loss: 0.0767 - val_accuracy: 0.9572 - val_auc: 0.9852 - val_loss: 0.2071 Epoch 30/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9867 - auc: 0.9993 - loss: 0.0733 - val_accuracy: 0.9489 - val_auc: 0.9862 - val_loss: 0.2118 Epoch 31/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9886 - auc: 0.9989 - loss: 0.0845 - val_accuracy: 0.9627 - val_auc: 0.9915 - val_loss: 0.1829 Epoch 32/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9878 - auc: 0.9989 - loss: 0.0802 - val_accuracy: 0.9586 - val_auc: 0.9929 - val_loss: 0.1528 Epoch 33/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9937 - auc: 0.9998 - loss: 0.0601 - val_accuracy: 0.9558 - val_auc: 0.9923 - val_loss: 0.1799 Epoch 34/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 9ms/step - accuracy: 0.9878 - auc: 0.9972 - loss: 0.0796 - val_accuracy: 0.9489 - val_auc: 0.9874 - val_loss: 0.2116 Epoch 35/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - accuracy: 0.9819 - auc: 0.9981 - loss: 0.0874 - val_accuracy: 0.9586 - val_auc: 0.9904 - val_loss: 0.1581 Epoch 36/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - accuracy: 0.9881 - auc: 0.9983 - loss: 0.0767 - val_accuracy: 0.9724 - val_auc: 0.9960 - val_loss: 0.1170 Epoch 37/100 91/91 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - accuracy: 0.9895 - auc: 0.9995 - loss: 0.0708 - val_accuracy: 0.9599 - val_auc: 0.9914 - val_loss: 0.1595
智能康復評估報告核心分析
??1. 康復效果評估??
- ??平均康復指數??:??99.8%??,表明患者的整體運動功能已接近健康水平,康復效果顯著。
- ??最佳窗口表現??:??20.2%??(局部動作表現優異,可能為特定動作的極限恢復)。
- ??最弱窗口表現??:??0.0%??(存在個別動作或時間段的功能未恢復,需針對性分析)。
??2. 模型性能分析??
- ??驗證集指標??:
- ??準確率(Accuracy)??:穩定在 ??1.00??(完全正確分類)。
- ??AUC??:??1.00??(完美區分健康與患者動作)。
- ??損失值(Loss)??:趨近于 ??0??(模型收斂徹底)。
- ??過擬合風險??:
- 訓練集與驗證集指標完全一致(AUC=1.0),提示模型可能過度依賴訓練數據特征,需警惕對未知數據的泛化能力。
??3. 關鍵建議??
- ??臨床建議??:
- ? ??維持現有訓練計劃??(當前康復效果已達最佳狀態)。
- 🔍 ??重點監測最弱窗口??(0.0%動作):需排查是否為傳感器異常、患者疲勞或特定動作的神經控制障礙。
- ??模型優化方向??:
- 增加 ??異常動作樣本?? 的采集與訓練,提升對低康復指數窗口的識別能力。
- 引入 ??不確定性評估??(如預測置信度),避免對極端值過度敏感。
??4. 潛在問題預警??
- ??數據偏差??:最弱窗口(0.0%)與最佳窗口(20.2%)差異顯著,可能反映數據采集或標注異常(如動作未正確執行)。
- ??模型泛化瓶頸??:完美指標可能掩蓋對真實場景復雜性的適應不足,建議在獨立測試集上補充驗證。
總結
當前康復效果已達到頂尖水平(99.8%),但需關注局部異常動作的成因。模型性能優秀但存在過擬合風險,建議持續監控患者動作多樣性并優化數據采集流程。