參見論文: Dual-Functional Artificial Noise (DFAN) Aided
Robust Covert Communications in Integrated
Sensing and Communications
理論
\boxed{} ?用于加框
Lemma 2. (BTI): For any A ∈ C N × N \mathbf{A} \in\mathbb{C}^{N\times N} A∈CN×N, b ∈ C N × 1 \mathbf{b}\in\mathbb{C}^{N\times1} b∈CN×1, c ∈ R c\in \mathbb{R} c∈R, x ~ C N ( 0 , I ) \mathbf{x}\sim\mathcal{CN}(0,\mathbf{I}) x~CN(0,I)and ρ ∈ [ 0 , 1 ] \rho\in[0,1] ρ∈[0,1],if there exist x x x and y y y, such that
Tr ? ( A ) ? 2 ln ? ( 1 ρ ) x + ln ? ( ρ ) y + c ≥ 0 , ∥ A ∥ F 2 + 2 ∥ b ∥ 2 ≤ x , y I + A ? 0 , y ≥ 0 , \begin{aligned} \operatorname{Tr}(\mathbf{A})-\sqrt{2\ln(\frac{1}{\rho})}x+\ln(\rho)y+c & \geq0, \\ \sqrt{\left\|\mathbf{A}\right\|_F^2+2\left\|\mathbf{b}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}\succeq\mathbf{0},y & \geq0, \end{aligned} Tr(A)?2ln(ρ1?)?x+ln(ρ)y+c∥A∥F2?+2∥b∥2?yI+A?0,y?≥0,≤x,≥0,?
the following inequality holds true
Pr ? ( x H A x + 2 R e { x H b } + c ≥ 0 ) ≥ 1 ? ρ . \Pr(\mathbf{x}^H\mathbf{A}\mathbf{x}+2\mathrm{Re}\{\mathbf{x}^H\mathbf{b}\}+c\geq0)\geq1-\rho. Pr(xHAx+2Re{xHb}+c≥0)≥1?ρ.
應用例子2:
已知
h w = h ^ w + γ w 1 2 e w \mathbf{h}_{\mathrm{w}}=\hat{\mathbf{h}}_{\mathrm{w}} + \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}} hw?=h^w?+γw21??ew?
問題
Pr ? ( h w H W h w ≤ p t h ) ≥ 1 ? ρ c , \begin{aligned} \Pr(\mathbf{h}_{w}^H\mathbf{W}\mathbf{h}_{w} \leq p_{\mathrm{th}}) \geq 1-\rho_c, \end{aligned} Pr(hwH?Whw?≤pth?)≥1?ρc?,?
即
Pr ? ( h w H ( ? W ) h w + p t h ≥ 0 ) ≥ 1 ? ρ c , \begin{aligned} \Pr(\mathbf{h}_{w}^H (-\mathbf{W}) \mathbf{h}_{w} + p_{\mathrm{th}} \geq 0 ) \geq 1-\rho_c, \end{aligned} Pr(hwH?(?W)hw?+pth?≥0)≥1?ρc?,?
即
Pr ? ( ( h ^ w + γ w 1 2 e w ) H ( ? W ) ( h ^ w + γ w 1 2 e w ) + p t h ≥ 0 ) ≥ 1 ? ρ c , \begin{aligned} \Pr( ( \hat{\mathbf{h}}_{\mathrm{w}} + \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}} )^H ( - \mathbf{W} ) ( \hat{\mathbf{h}}_{\mathrm{w}} + \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}} ) + p_{\mathrm{th}} \geq 0 ) \geq 1-\rho_c, \end{aligned} Pr((h^w?+γw21??ew?)H(?W)(h^w?+γw21??ew?)+pth?≥0)≥1?ρc?,?
即
Pr ? ( e w H ( γ w 1 2 ( ? W ) γ w 1 2 ) e w + 2 R e { e w H γ w 1 2 ( ? W ) h ^ w } + h ^ w H ( ? W ) h ^ w + p t h ≥ 0 ) ≥ 1 ? ρ c , \begin{aligned} \Pr( \mathbf{e}_{\mathrm{w}} ^H ( \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}} ( - \mathbf{W} ) \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}} ) \mathbf{e}_{\mathrm{w}} + 2\mathrm{Re}\{\mathbf{e}_{\mathrm{w}}^H \boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}} ( - \mathbf{W} ) \hat{\mathbf{h}}_{\mathrm{w}} \} +\hat{\mathbf{h}}_{\mathrm{w}}^H ( - \mathbf{W} ) \hat{\mathbf{h}}_{\mathrm{w}} + p_{\mathrm{th}} \geq 0 ) \geq 1-\rho_c, \end{aligned} Pr(ewH?(γw21??(?W)γw21??)ew?+2Re{ewH?γw21??(?W)h^w?}+h^wH?(?W)h^w?+pth?≥0)≥1?ρc?,?
可以等價于下列問題:
Tr ? ( A ) ? 2 ln ? ( 1 ρ ) x + ln ? ( ρ ) y + c ≥ 0 , ∥ A ∥ F 2 + 2 ∥ b ∥ 2 ≤ x , y I + A ? 0 , y ≥ 0 , \begin{aligned} \operatorname{Tr}(\mathbf{A})-\sqrt{2\ln(\frac{1}{\rho})}x+\ln(\rho)y+c & \geq0, \\ \sqrt{\left\|\mathbf{A}\right\|_F^2+2\left\|\mathbf{b}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}\succeq\mathbf{0},y & \geq0, \end{aligned} Tr(A)?2ln(ρ1?)?x+ln(ρ)y+c∥A∥F2?+2∥b∥2?yI+A?0,y?≥0,≤x,≥0,?
應用例子:
已知:
Pr ? ( h w H S 1 h w ≤ 0 ) ≥ 1 ? ρ c , \Pr(\mathbf{h}_{\mathrm{w}}^{H}\mathbf{S}_{1}\mathbf{h}_{\mathrm{w}}\leq0)\geq1-\rho_{c}, Pr(hwH?S1?hw?≤0)≥1?ρc?,
Recall?that? h w = h ^ w + γ w 1 2 e w . As?per?Lemma?2,?(28)?can be?equivalently?transformed?to?the?following?inequalities \begin{array} {c}\text{Recall that }\mathbf{h}_{\mathrm{w}}=\hat{\mathbf{h}}_{\mathrm{w}}+\boldsymbol{\gamma}_{\mathrm{w}}^{\frac{1}{2}}\mathbf{e}_{\mathrm{w}}.\text{ As per Lemma 2, (28) can} \\ \text{be equivalently transformed to the following inequalities} \end{array} Recall?that?hw?=h^w?+γw21??ew?.?As?per?Lemma?2,?(28)?canbe?equivalently?transformed?to?the?following?inequalities?
T r ( A w ) ? 2 ln ? ( 1 ρ c ) x + ln ? ( ρ c ) y + c w ≥ 0 , ∥ A w ∥ F 2 + 2 ∥ b w ∥ 2 ≤ x , y I + A w ? 0 , y ≥ 0 , \begin{aligned} \mathrm{Tr}(\mathbf{A}_\mathrm{w})-\sqrt{2\ln(\frac{1}{\rho_c})}x+\ln(\rho_c)y+c_\mathrm{w} & \geq0, \\ \sqrt{\left\|\mathbf{A}_\mathrm{w}\right\|_F^2+2\left\|\mathbf{b}_\mathrm{w}\right\|^2} & \leq x, \\ y\mathbf{I}+\mathbf{A}_\mathrm{w} & \succeq\mathbf{0},y\geq0, \end{aligned} Tr(Aw?)?2ln(ρc?1?)?x+ln(ρc?)y+cw?∥Aw?∥F2?+2∥bw?∥2?yI+Aw??≥0,≤x,?0,y≥0,?
w h e r e A w = γ w 1 2 ( ? S 1 ) γ w 1 2 , c w = h ^ w H ( ? S 1 ) h ^ w a n d b w = γ w 1 2 ( ? S 1 ) h ^ w . \begin{aligned} & \mathrm{where~}\mathbf{A}_\mathrm{w~}=\gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\gamma_\mathrm{w}^{\frac{1}{2}},c_\mathrm{w~}=\hat{\mathbf{h}}_\mathrm{w}^H(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w~}\mathrm{~and~}\mathbf{b}_\mathrm{w~}= \\ & \gamma_\mathrm{w}^{\frac{1}{2}}(-\mathbf{S}_1)\hat{\mathbf{h}}_\mathrm{w}. \end{aligned} ?where?Aw??=γw21??(?S1?)γw21??,cw??=h^wH?(?S1?)h^w???and?bw??=γw21??(?S1?)h^w?.?
注意其中只有 x x x和 y y y是輔助變量。