高中成績可視化平臺(1)
一、項目概述
本系統是一個基于 PyQt5 和 Matplotlib 的高中成績數據可視化分析平臺,旨在幫助教師快速了解學生成績分布、班級對比、學科表現等關鍵指標。平臺支持文科與理科的數據切換,并提供多個維度的圖表展示和交互式操作。
核心功能:
- 文科/理科數據動態切換
- 四個核心分析頁面(總覽、學科分析、班級分析、排名分析)
- 圖表聯動刷新機制
- 表格與圖表雙向綁定
- 自定義樣式與視覺美化
二、技術選型
技術 | 用途 |
---|---|
PyQt5 | GUI 界面構建 |
Pandas | 數據處理與分析 |
Matplotlib | 圖表繪制 |
QTabWidget | 多選項卡管理 |
QComboBox / QTableWidget | 控件交互 |
三、模塊劃分與類結構
整個平臺主要由兩個類組成:
ScoreVisualizationPlatform
:主窗口類,負責 UI 構建與事件處理DataProcessor
:數據處理類,封裝所有數據讀取與分析邏輯
四、UI 構建與控件初始化
def __init__(self):super().__init__()self.setWindowTitle("2023級成績可視化平臺")self.resize(1200, 800)# 初始化數據處理器self.data_processor = DataProcessor()# 主布局main_layout = QVBoxLayout(self)control_panel = QWidget()control_layout = QHBoxLayout(control_panel)# 下拉框選擇文理類型self.stream_combo = QComboBox()self.stream_combo.addItems(["文科", "理科"])control_layout.addWidget(QLabel("文理類型:"))control_layout.addWidget(self.stream_combo)# 科目選擇下拉框self.subject_combo = QComboBox()control_layout.addWidget(QLabel("科目選擇:"))control_layout.addWidget(self.subject_combo)# 班級選擇下拉框self.classes_combo = QComboBox()control_layout.addWidget(QLabel("班級選擇:"))control_layout.addWidget(self.classes_combo)# 加載數據按鈕load_button = QPushButton("加載數據")control_layout.addWidget(load_button)# 添加控件到主布局main_layout.addWidget(control_panel)# 創建選項卡self.tab_widget = QTabWidget()main_layout.addWidget(self.tab_widget)# 初始化各選項卡self.create_overview_tab()self.create_subject_analysis_tab()self.create_class_analysis_tab()self.create_ranking_tab()# 綁定信號self.stream_combo.currentTextChanged.connect(self.on_data_type_changed)self.subject_combo.currentTextChanged.connect(lambda: self.refresh_all_charts())self.classes_combo.currentTextChanged.connect(lambda: self.refresh_all_charts())load_button.clicked.connect(self.load_data)
📌 提示:該部分完成主窗口的創建,包含控制面板、四個選項卡以及數據加載按鈕。
五、選項卡頁面設計與實現
1. 總覽頁 create_overview_tab()
def create_overview_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "總覽")layout = QGridLayout(tab)# 圖1:總分前20名圖表self.total_score_chart = ChartWidget("總分Top20")layout.addWidget(self.total_score_chart, 0, 0, 1, 1)# 圖2:班級占比圖表self.class_distribution_chart = ChartWidget("Top20班級占比")layout.addWidget(self.class_distribution_chart, 0, 3, 1, 3)# 圖3:各科目平均分對比self.subject_avg_chart = ChartWidget("學科Top20")layout.addWidget(self.subject_avg_chart, 1, 0, 1, 1)# 圖4:班級學科分布(占第1行后兩列)self.class_subject_chart = ChartWidget("學科Top20班級占比")layout.addWidget(self.class_subject_chart, 1, 3, 1, 3)
圖表說明:
區域 | 內容 |
---|---|
左上 | 總分前20名柱狀圖 |
右上 | 班級分布餅圖 |
左下 | 當前科目前20名柱狀圖 |
右下 | 當前科目班級分布餅圖 |
2. 學科分析頁 create_subject_analysis_tab()
def create_subject_analysis_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "學科分析")layout = QGridLayout(tab)self.passing_rank = ChartWidget("本科上線排名")layout.addWidget(self.passing_rank, 0, 0)self.subject_stats_chart = ChartWidget("各科目統計分析")layout.addWidget(self.subject_stats_chart, 0, 1)self.single_subject_chart = ChartWidget("單科目上線人數排名")layout.addWidget(self.single_subject_chart, 1, 0)self.correlation_chart = ChartWidget("科目成績相關性分析")layout.addWidget(self.correlation_chart, 1, 1)
圖表說明:
區域 | 內容 |
---|---|
左上 | 各班過線人數柱狀圖 |
右上 | 各科平均分柱狀圖 |
左下 | 各科及格人數柱狀圖 |
右下 | 兩個科目的散點圖(顯示相關性) |
3. 班級分析頁 create_class_analysis_tab()
def create_class_analysis_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "班級分析")layout = QGridLayout(tab)self.class_avg_chart = ChartWidget("各班級平均分對比")layout.addWidget(self.class_avg_chart, 0, 0)self.class_score_dist_chart = ChartWidget("班級成績分布")layout.addWidget(self.class_score_dist_chart, 0, 1)self.class_subject_performance_chart = ChartWidget("班級各科表現")layout.addWidget(self.class_subject_performance_chart, 1, 0)self.total_top_5 = ChartWidget("各班級top5各科表現")layout.addWidget(self.total_top_5, 1, 1)
圖表說明:
區域 | 內容 |
---|---|
左上 | 班級平均分柱狀圖 |
右上 | 成績分布直方圖 |
左下 | 各科平均分折線圖 |
右下 | 每個班級 top5 學生的各科成績雷達圖 |
4. 排名分析頁 create_ranking_tab()
def create_ranking_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "排名分析")main_layout = QVBoxLayout(tab)tables_container = QWidget()tables_layout = QVBoxLayout(tables_container)inner_layout = QHBoxLayout(tab)ranking_group = QVBoxLayout()self.ranking_title = QLabel("年級前100名學生")self.ranking_table = QTableWidget()self.ranking_table.setSortingEnabled(True)ranking_group.addWidget(self.ranking_title)ranking_group.addWidget(self.ranking_table)class_group = QVBoxLayout()self.class_title = QLabel("當前班級單科成績排名")self.class_tables = QTableWidget()self.class_tables.setSortingEnabled(True)class_group.addWidget(self.class_title)class_group.addWidget(self.class_tables)inner_layout.addLayout(ranking_group, stretch=1)inner_layout.addLayout(class_group, stretch=1)tables_layout.addLayout(inner_layout)main_layout.addWidget(tables_container)self.figure = Figure(figsize=(5, 3))self.canvas = FigureCanvas(self.figure)self.canvas.setStyleSheet("background-color:rgba(0, 1, 1, 0.3); border: 1px solid #ccc;")main_layout.addWidget(self.canvas)
圖表說明:
區域 | 內容 |
---|---|
上部 | 兩個表格(年級前100名 / 當前班級單科排名) |
下部 | 動態繪圖區域(用于展示趨勢、對比等圖表) |
六、數據處理與圖表聯動
1. 數據加載與刷新機制
def load_data(self):if self.data_processor.load_data():self.refresh_all_charts()QMessageBox.information(self, "成功", "數據加載完成!")else:QMessageBox.warning(self, "錯誤", "數據加載失敗,請檢查數據文件!")def on_data_type_changed(self, data_type):self.refresh_all_charts()def refresh_all_charts(self):data_type = "liberal" if self.stream_combo.currentText() == "文科" else "science"subject_prefix = "文科" if data_type == "liberal" else "理科"subject_type = self.subject_combo.currentText()self.total_score_chart.title = f"2023級{subject_prefix}總分前20名"self.class_distribution_chart.title = f"2023級{subject_prefix}前20名班級占比"self.update_overview_charts(data_type, subject_type)self.update_subject_analysis_charts(data_type)self.update_class_analysis_charts(data_type)self.update_ranking_table(data_type)
? 特點:通過組合文理科類型 + 科目 + 班級,動態更新所有圖表與表格內容。
2. 總覽頁圖表更新 update_overview_charts()
def update_overview_charts(self, data_type, subject):# 總分前20名柱狀圖top_students = self.data_processor.get_top_students(data_type, 20)if top_students is not None:self.total_score_chart.plot_bar_chart(top_students, '姓名', '總分',f"{'文科' if data_type == 'liberal' else '理科'}總分Top20")# 班級分布餅圖top20_class_dist = top_students['班級'].value_counts().reset_index()top20_class_dist.columns = ['班級', '人數']self.class_distribution_chart.plot_pie_chart(top20_class_dist, '班級', '人數',f"{'文科' if data_type == 'liberal' else '理科'}Top20班級占比")# 單科前20名柱狀圖subject_top20 = data.nlargest(20, subject)[['姓名', subject]]self.subject_avg_chart.plot_bar_chart(subject_top20, '姓名', subject,f"{'文科' if data_type == 'liberal' else '理科'}{subject}Top20")# 班級學科分布餅圖class_subject_data = self.data_processor.get_class_subject_top20(data_type)subject_class_dist = class_subject_data[subject].reset_index()subject_class_dist.columns = ['班級', '人數']self.class_subject_chart.plot_pie_chart(subject_class_dist, '班級', '人數',f"{'文科' if data_type == 'liberal' else '理科'}{subject}Top20班級占比")
3. 學科分析頁圖表更新 update_subject_analysis_charts()
def update_subject_analysis_charts(self, data_type):passing = self.data_processor.get_pass_line(data_type)totals = self.data_processor.calculate_total_scores(data_type)ranks = totals[totals['總分'] > passing].groupby('班級').size(). \reset_index(name='人數').sort_values(by='人數', ascending=False)self.passing_rank.plot_bar_chart(ranks, '班級', '人數', f"{'文科' if data_type == 'liberal' else '理科'}各班過線人數")subject_analysis = self.data_processor.get_subject_analysis(data_type)avg_scores = subject_analysis['平均分'].reset_index()avg_scores.columns = ['科目', '平均分']self.subject_stats_chart.plot_bar_chart(avg_scores, '科目', '平均分', "各科目平均分對比")online_counts = []for subject in subjects:if subject in data.columns:online_count = (data[subject] >= 60).sum()online_counts.append({'科目': subject, '及格人數': online_count})online_df = pd.DataFrame(online_counts)self.single_subject_chart.plot_bar_chart(online_df, '科目', '及格人數', "各科目及格人數統計")subject1, subject2 = subjects[0], subjects[1]clean_data = data[[subject1, subject2]].dropna()ax.scatter(clean_data[subject1], clean_data[subject2], alpha=0.9, edgecolors='#8A0808')self.correlation_chart.figure.tight_layout()self.correlation_chart.canvas.draw()
4. 班級分析頁圖表更新 update_class_analysis_charts()
def update_class_analysis_charts(self, data_type):# 平均總分柱狀圖class_avg_scores = []for class_name in data['班級'].unique():class_data = data[data['班級'] == class_name]total_scores = class_data[subjects].sum(axis=1, skipna=True)avg_score = total_scores.mean()class_avg_scores.append({'班級': class_name, '平均總分': avg_score})class_avg_df = pd.DataFrame(class_avg_scores).sort_values('平均總分', ascending=False)self.class_avg_chart.plot_bar_chart(class_avg_df, '班級', '平均總分', "各班級平均總分對比")# 分數段分布柱狀圖bins = [0, 300, 400, 500, 600, 700, 800]labels = ['0-300', '300-400', '400-500', '500-600', '600-700', '700-800']score_dist = []for label, (low, high) in zip(labels, zip(bins[:-1], bins[1:])):count = ((total_scores_data['總分'] >= low) & (total_scores_data['總分'] < high)).sum()score_dist.append({'分數段': label, '人數': count})score_dist_df = pd.DataFrame(score_dist)self.class_score_dist_chart.plot_bar_chart(score_dist_df, '分數段', '人數', "總分分布統計")# 各科表現堆疊柱狀圖stacked_data = []for class_name in sorted(all_classes):row = {'班級': class_name}for subject, subject_data in class_subject_data.items():row[subject] = subject_data.get(class_name, 0)stacked_data.append(row)stacked_df = pd.DataFrame(stacked_data)self.class_subject_performance_chart.plot_stacked_bar(stacked_df, "各班級各科目前20名人數分布")# 各班前5名圖表top_5 = self.data_processor.get_class_top_5(data_type, class_name)[0][['姓名'] + subjects]self.total_top_5.plot_stacked_bar(data=top_5, title=f"{class_name} 學生學科成績分布",item_1='姓名', item_2='姓名',x_label='學生姓名', y_label='分數')
5. 排名分析頁表格與圖表更新 update_ranking_table()
def update_ranking_table(self, data_type):top_students = self.data_processor.get_top_students(data_type, 100)if top_students is not None:self.ranking_table.setRowCount(len(top_students))self.ranking_table.setColumnCount(4)self.ranking_table.setHorizontalHeaderLabels(['排名', '姓名', '班級', '總分'])for i, (_, row) in enumerate(top_students.iterrows()):self.ranking_table.setItem(i, 0, QTableWidgetItem(str(i + 1)))self.ranking_table.setItem(i, 1, QTableWidgetItem(str(row['姓名'])))self.ranking_table.setItem(i, 2, QTableWidgetItem(str(row['班級'])))self.ranking_table.setItem(i, 3, QTableWidgetItem(f"{row['總分']:.1f}"))self.ranking_table.resizeColumnsToContents()cla = self.classes_combo.currentText()sujects = self.subject_combo.currentText()data = self.data_processor.get_subject_scores(data_type, cla, sujects)if data is not None:self.class_tables.setRowCount(len(data))self.class_tables.setColumnCount(4)self.class_tables.setHorizontalHeaderLabels(['單科排名', '姓名', '班級', sujects])for i, (_, row) in enumerate(data.iterrows()):self.class_tables.setItem(i, 0, QTableWidgetItem(str(i + 1)))self.class_tables.setItem(i, 1, QTableWidgetItem(str(row['姓名'])))self.class_tables.setItem(i, 2, QTableWidgetItem(str(row['班級'])))self.class_tables.setItem(i, 3, QTableWidgetItem(f"{row[sujects]:.1f}"))self.class_tables.resizeColumnsToContents()data = data.head()self.figure.clear()self.figure.patch.set_alpha(0.0)ax = self.figure.add_subplot(111)ax.set_facecolor((0, 1, 1, 0.3))bars = ax.bar(data["姓名"], data[sujects], color="#4CAF50")for bar in bars:yval = bar.get_height()ax.text(bar.get_x() + bar.get_width() / 2.0, yval, int(yval),va='bottom', ha='center', color='cyan')ax.set_title(f"{'文科' if data_type == 'liberal' else '理科'}-{cla}-{sujects}前5名", color='cyan')ax.set_ylabel('分數', color='cyan')ax.set_xlabel('姓名', color='cyan')ax.grid(True, linestyle='--', alpha=0.6)ax.tick_params(axis='x', colors='cyan')ax.tick_params(axis='y', colors='cyan')self.canvas.draw()
高中成績可視化平臺(2)
一、項目概述
本系統是一個基于 PyQt5 和 Matplotlib 的高中成績數據可視化分析平臺,旨在幫助教師快速了解學生成績分布、班級對比、學科表現等關鍵指標。平臺支持文科與理科的數據切換,并提供多個維度的圖表展示和交互式操作。
核心功能:
- 文科/理科數據動態切換
- 四個核心分析頁面(總覽、學科分析、班級分析、排名分析)
- 圖表聯動刷新機制
- 表格與圖表雙向綁定
- 自定義樣式與視覺美化
二、技術選型
技術 | 用途 |
---|---|
PyQt5 | GUI 界面構建 |
Pandas | 數據處理與分析 |
Matplotlib | 圖表繪制 |
QTabWidget | 多選項卡管理 |
QComboBox / QTableWidget | 控件交互 |
三、模塊劃分與類結構
整個平臺主要由兩個類組成:
ScoreVisualizationPlatform
:主窗口類,負責 UI 構建與事件處理DataProcessor
:數據處理類,封裝所有數據讀取與分析邏輯
四、UI 構建與控件初始化
def __init__(self):super().__init__()self.setWindowTitle("2023級成績可視化平臺")self.resize(1200, 800)# 初始化數據處理器self.data_processor = DataProcessor()# 主布局main_layout = QVBoxLayout(self)control_panel = QWidget()control_layout = QHBoxLayout(control_panel)# 下拉框選擇文理類型self.stream_combo = QComboBox()self.stream_combo.addItems(["文科", "理科"])control_layout.addWidget(QLabel("文理類型:"))control_layout.addWidget(self.stream_combo)# 科目選擇下拉框self.subject_combo = QComboBox()control_layout.addWidget(QLabel("科目選擇:"))control_layout.addWidget(self.subject_combo)# 班級選擇下拉框self.classes_combo = QComboBox()control_layout.addWidget(QLabel("班級選擇:"))control_layout.addWidget(self.classes_combo)# 加載數據按鈕load_button = QPushButton("加載數據")control_layout.addWidget(load_button)# 添加控件到主布局main_layout.addWidget(control_panel)# 創建選項卡self.tab_widget = QTabWidget()main_layout.addWidget(self.tab_widget)# 初始化各選項卡self.create_overview_tab()self.create_subject_analysis_tab()self.create_class_analysis_tab()self.create_ranking_tab()# 綁定信號self.stream_combo.currentTextChanged.connect(self.on_data_type_changed)self.subject_combo.currentTextChanged.connect(lambda: self.refresh_all_charts())self.classes_combo.currentTextChanged.connect(lambda: self.refresh_all_charts())load_button.clicked.connect(self.load_data)
📌 提示:該部分完成主窗口的創建,包含控制面板、四個選項卡以及數據加載按鈕。
五、選項卡頁面設計與實現
1. 總覽頁 create_overview_tab()
def create_overview_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "總覽")layout = QGridLayout(tab)# 圖1:總分前20名圖表self.total_score_chart = ChartWidget("總分Top20")layout.addWidget(self.total_score_chart, 0, 0, 1, 1)# 圖2:班級占比圖表self.class_distribution_chart = ChartWidget("Top20班級占比")layout.addWidget(self.class_distribution_chart, 0, 3, 1, 3)# 圖3:各科目平均分對比self.subject_avg_chart = ChartWidget("學科Top20")layout.addWidget(self.subject_avg_chart, 1, 0, 1, 1)# 圖4:班級學科分布(占第1行后兩列)self.class_subject_chart = ChartWidget("學科Top20班級占比")layout.addWidget(self.class_subject_chart, 1, 3, 1, 3)
圖表說明:
區域 | 內容 |
---|---|
左上 | 總分前20名柱狀圖 |
右上 | 班級分布餅圖 |
左下 | 當前科目前20名柱狀圖 |
右下 | 當前科目班級分布餅圖 |
2. 學科分析頁 create_subject_analysis_tab()
def create_subject_analysis_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "學科分析")layout = QGridLayout(tab)self.passing_rank = ChartWidget("本科上線排名")layout.addWidget(self.passing_rank, 0, 0)self.subject_stats_chart = ChartWidget("各科目統計分析")layout.addWidget(self.subject_stats_chart, 0, 1)self.single_subject_chart = ChartWidget("單科目上線人數排名")layout.addWidget(self.single_subject_chart, 1, 0)self.correlation_chart = ChartWidget("科目成績相關性分析")layout.addWidget(self.correlation_chart, 1, 1)
圖表說明:
區域 | 內容 |
---|---|
左上 | 各班過線人數柱狀圖 |
右上 | 各科平均分柱狀圖 |
左下 | 各科及格人數柱狀圖 |
右下 | 兩個科目的散點圖(顯示相關性) |
3. 班級分析頁 create_class_analysis_tab()
def create_class_analysis_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "班級分析")layout = QGridLayout(tab)self.class_avg_chart = ChartWidget("各班級平均分對比")layout.addWidget(self.class_avg_chart, 0, 0)self.class_score_dist_chart = ChartWidget("班級成績分布")layout.addWidget(self.class_score_dist_chart, 0, 1)self.class_subject_performance_chart = ChartWidget("班級各科表現")layout.addWidget(self.class_subject_performance_chart, 1, 0)self.total_top_5 = ChartWidget("各班級top5各科表現")layout.addWidget(self.total_top_5, 1, 1)
圖表說明:
區域 | 內容 |
---|---|
左上 | 班級平均分柱狀圖 |
右上 | 成績分布直方圖 |
左下 | 各科平均分折線圖 |
右下 | 每個班級 top5 學生的各科成績雷達圖 |
4. 排名分析頁 create_ranking_tab()
def create_ranking_tab(self):tab = QWidget()self.tab_widget.addTab(tab, "排名分析")main_layout = QVBoxLayout(tab)tables_container = QWidget()tables_layout = QVBoxLayout(tables_container)inner_layout = QHBoxLayout(tab)ranking_group = QVBoxLayout()self.ranking_title = QLabel("年級前100名學生")self.ranking_table = QTableWidget()self.ranking_table.setSortingEnabled(True)ranking_group.addWidget(self.ranking_title)ranking_group.addWidget(self.ranking_table)class_group = QVBoxLayout()self.class_title = QLabel("當前班級單科成績排名")self.class_tables = QTableWidget()self.class_tables.setSortingEnabled(True)class_group.addWidget(self.class_title)class_group.addWidget(self.class_tables)inner_layout.addLayout(ranking_group, stretch=1)inner_layout.addLayout(class_group, stretch=1)tables_layout.addLayout(inner_layout)main_layout.addWidget(tables_container)self.figure = Figure(figsize=(5, 3))self.canvas = FigureCanvas(self.figure)self.canvas.setStyleSheet("background-color:rgba(0, 1, 1, 0.3); border: 1px solid #ccc;")main_layout.addWidget(self.canvas)
圖表說明:
區域 | 內容 |
---|---|
上部 | 兩個表格(年級前100名 / 當前班級單科排名) |
下部 | 動態繪圖區域(用于展示趨勢、對比等圖表) |
六、數據處理與圖表聯動
1. 數據加載與刷新機制
def load_data(self):if self.data_processor.load_data():self.refresh_all_charts()QMessageBox.information(self, "成功", "數據加載完成!")else:QMessageBox.warning(self, "錯誤", "數據加載失敗,請檢查數據文件!")def on_data_type_changed(self, data_type):self.refresh_all_charts()def refresh_all_charts(self):data_type = "liberal" if self.stream_combo.currentText() == "文科" else "science"subject_prefix = "文科" if data_type == "liberal" else "理科"subject_type = self.subject_combo.currentText()self.total_score_chart.title = f"2023級{subject_prefix}總分前20名"self.class_distribution_chart.title = f"2023級{subject_prefix}前20名班級占比"self.update_overview_charts(data_type, subject_type)self.update_subject_analysis_charts(data_type)self.update_class_analysis_charts(data_type)self.update_ranking_table(data_type)
? 特點:通過組合文理科類型 + 科目 + 班級,動態更新所有圖表與表格內容。
2. 總覽頁圖表更新 update_overview_charts()
def update_overview_charts(self, data_type, subject):# 總分前20名柱狀圖top_students = self.data_processor.get_top_students(data_type, 20)if top_students is not None:self.total_score_chart.plot_bar_chart(top_students, '姓名', '總分',f"{'文科' if data_type == 'liberal' else '理科'}總分Top20")# 班級分布餅圖top20_class_dist = top_students['班級'].value_counts().reset_index()top20_class_dist.columns = ['班級', '人數']self.class_distribution_chart.plot_pie_chart(top20_class_dist, '班級', '人數',f"{'文科' if data_type == 'liberal' else '理科'}Top20班級占比")# 單科前20名柱狀圖subject_top20 = data.nlargest(20, subject)[['姓名', subject]]self.subject_avg_chart.plot_bar_chart(subject_top20, '姓名', subject,f"{'文科' if data_type == 'liberal' else '理科'}{subject}Top20")# 班級學科分布餅圖class_subject_data = self.data_processor.get_class_subject_top20(data_type)subject_class_dist = class_subject_data[subject].reset_index()subject_class_dist.columns = ['班級', '人數']self.class_subject_chart.plot_pie_chart(subject_class_dist, '班級', '人數',f"{'文科' if data_type == 'liberal' else '理科'}{subject}Top20班級占比")
3. 學科分析頁圖表更新 update_subject_analysis_charts()
def update_subject_analysis_charts(self, data_type):passing = self.data_processor.get_pass_line(data_type)totals = self.data_processor.calculate_total_scores(data_type)ranks = totals[totals['總分'] > passing].groupby('班級').size(). \reset_index(name='人數').sort_values(by='人數', ascending=False)self.passing_rank.plot_bar_chart(ranks, '班級', '人數', f"{'文科' if data_type == 'liberal' else '理科'}各班過線人數")subject_analysis = self.data_processor.get_subject_analysis(data_type)avg_scores = subject_analysis['平均分'].reset_index()avg_scores.columns = ['科目', '平均分']self.subject_stats_chart.plot_bar_chart(avg_scores, '科目', '平均分', "各科目平均分對比")online_counts = []for subject in subjects:if subject in data.columns:online_count = (data[subject] >= 60).sum()online_counts.append({'科目': subject, '及格人數': online_count})online_df = pd.DataFrame(online_counts)self.single_subject_chart.plot_bar_chart(online_df, '科目', '及格人數', "各科目及格人數統計")subject1, subject2 = subjects[0], subjects[1]clean_data = data[[subject1, subject2]].dropna()ax.scatter(clean_data[subject1], clean_data[subject2], alpha=0.9, edgecolors='#8A0808')self.correlation_chart.figure.tight_layout()self.correlation_chart.canvas.draw()
4. 班級分析頁圖表更新 update_class_analysis_charts()
def update_class_analysis_charts(self, data_type):# 平均總分柱狀圖class_avg_scores = []for class_name in data['班級'].unique():class_data = data[data['班級'] == class_name]total_scores = class_data[subjects].sum(axis=1, skipna=True)avg_score = total_scores.mean()class_avg_scores.append({'班級': class_name, '平均總分': avg_score})class_avg_df = pd.DataFrame(class_avg_scores).sort_values('平均總分', ascending=False)self.class_avg_chart.plot_bar_chart(class_avg_df, '班級', '平均總分', "各班級平均總分對比")# 分數段分布柱狀圖bins = [0, 300, 400, 500, 600, 700, 800]labels = ['0-300', '300-400', '400-500', '500-600', '600-700', '700-800']score_dist = []for label, (low, high) in zip(labels, zip(bins[:-1], bins[1:])):count = ((total_scores_data['總分'] >= low) & (total_scores_data['總分'] < high)).sum()score_dist.append({'分數段': label, '人數': count})score_dist_df = pd.DataFrame(score_dist)self.class_score_dist_chart.plot_bar_chart(score_dist_df, '分數段', '人數', "總分分布統計")# 各科表現堆疊柱狀圖stacked_data = []for class_name in sorted(all_classes):row = {'班級': class_name}for subject, subject_data in class_subject_data.items():row[subject] = subject_data.get(class_name, 0)stacked_data.append(row)stacked_df = pd.DataFrame(stacked_data)self.class_subject_performance_chart.plot_stacked_bar(stacked_df, "各班級各科目前20名人數分布")# 各班前5名圖表top_5 = self.data_processor.get_class_top_5(data_type, class_name)[0][['姓名'] + subjects]self.total_top_5.plot_stacked_bar(data=top_5, title=f"{class_name} 學生學科成績分布",item_1='姓名', item_2='姓名',x_label='學生姓名', y_label='分數')
5. 排名分析頁表格與圖表更新 update_ranking_table()
def update_ranking_table(self, data_type):top_students = self.data_processor.get_top_students(data_type, 100)if top_students is not None:self.ranking_table.setRowCount(len(top_students))self.ranking_table.setColumnCount(4)self.ranking_table.setHorizontalHeaderLabels(['排名', '姓名', '班級', '總分'])for i, (_, row) in enumerate(top_students.iterrows()):self.ranking_table.setItem(i, 0, QTableWidgetItem(str(i + 1)))self.ranking_table.setItem(i, 1, QTableWidgetItem(str(row['姓名'])))self.ranking_table.setItem(i, 2, QTableWidgetItem(str(row['班級'])))self.ranking_table.setItem(i, 3, QTableWidgetItem(f"{row['總分']:.1f}"))self.ranking_table.resizeColumnsToContents()cla = self.classes_combo.currentText()sujects = self.subject_combo.currentText()data = self.data_processor.get_subject_scores(data_type, cla, sujects)if data is not None:self.class_tables.setRowCount(len(data))self.class_tables.setColumnCount(4)self.class_tables.setHorizontalHeaderLabels(['單科排名', '姓名', '班級', sujects])for i, (_, row) in enumerate(data.iterrows()):self.class_tables.setItem(i, 0, QTableWidgetItem(str(i + 1)))self.class_tables.setItem(i, 1, QTableWidgetItem(str(row['姓名'])))self.class_tables.setItem(i, 2, QTableWidgetItem(str(row['班級'])))self.class_tables.setItem(i, 3, QTableWidgetItem(f"{row[sujects]:.1f}"))self.class_tables.resizeColumnsToContents()data = data.head()self.figure.clear()self.figure.patch.set_alpha(0.0)ax = self.figure.add_subplot(111)ax.set_facecolor((0, 1, 1, 0.3))bars = ax.bar(data["姓名"], data[sujects], color="#4CAF50")for bar in bars:yval = bar.get_height()ax.text(bar.get_x() + bar.get_width() / 2.0, yval, int(yval),va='bottom', ha='center', color='cyan')ax.set_title(f"{'文科' if data_type == 'liberal' else '理科'}-{cla}-{sujects}前5名", color='cyan')ax.set_ylabel('分數', color='cyan')ax.set_xlabel('姓名', color='cyan')ax.grid(True, linestyle='--', alpha=0.6)ax.tick_params(axis='x', colors='cyan')ax.tick_params(axis='y', colors='cyan')self.canvas.draw()
七、項目結果圖(部分)
附:qss樣式
QMainWindow {background-color: #16003a;
}
QWidget {background-color: #16003a;color: cyan;
}
QTabWidget::pane {border: 1px solid rgba(221, 221, 221, 0);background-color: #16003a;
}
QTabBar::tab {background-color: #16003a;padding: 8px 16px;margin-right: 2px;border-top-left-radius: 4px;border-top-right-radius: 4px;
}
QTabBar::tab:selected {background-color: #00385e;color: #ffffff;
}
QPushButton {background-color: rgba(31, 106, 152, 0.81);color: cyan;border: none;padding: 8px 16px;border-radius: 4px;font-weight: bold;
}
QPushButton:hover {background-color: #00560f;
}
QGroupBox {color: #4dffff;font-size: 13px;border: 2px solid #4dffff;border-radius: 5px;margin-top: 2px;padding-top: 2px;
}
QGroupBox::title {color: cyan;subcontrol-origin: margin;left: 5px;padding: 0 5px 0 5px;
}
QLabel {color: cyan;text-align: center;background-color: #16003a;font-size: 20px;font-weight: bold;
}
QLabel#titleLabel {padding: 5px;font-size: 40px;font-family: "Microsoft YaHei";text-align: center;
}
QComboBox {background-color: rgba(162, 88, 0, 0.7);color: cyan;font-size: 12px;border: 1px solid #ffffff;border-radius: 35px;padding: 0px 5px;
}
QComboBox QAbstractItemView::item:hover {background-color: #0B6121;
}
- 數據: 需要數據或遇到問題可聯系QQ(1591236129)