?MOS管的三個引腳分別是Gate(柵極)、Source(源極)和Drain(漏極)。以下是詳細介紹:
- Gate(柵極)。這是控制MOS管開關的關鍵引腳,用于控制電流的流通。
- Source(源極)。這是電流流入的引腳,通常與MOS管的負極連接。
- Drain(漏極)。這是電流流出的引腳,與外部電路的正極相連。
晶體管有N型channel所有它稱為N-channel MOS管,或NMOS。P-channel MOS(PMOS)管也存在,是一個由輕摻雜的N型BACKGATE和P型source和drain組成的PMOS管。無論N型或者P型MOS管,其工作原理本質是一樣的。MOS管是由加在輸入端柵極的電壓來控制輸出端漏極的電流。MOS管是壓控器件它通過加在柵極上的電壓控制器件的特性,不會發生像三極管做開關時的因基極電流引起的電荷存儲效應,因此在開關應用中,MOS管的開關速度應該比三極管快。
查閱下圖可快速判斷MOS管的三個引腳是什么
首先需要判斷是NMOS管還是PMOS管,注意下圖的電流走向。
場效應管的名字也來源于它的輸入端(稱為gate)通過投影一個電場在一個絕緣層上來影響流過晶體管的電流。事實上沒有電流流過這個絕緣體,所以FET管的GATE電流非常小。最普通的FET用一薄層二氧化硅來作為GATE極下的絕緣體。
這種晶體管稱為金屬氧化物半導體(MOS)晶體管,或,金屬氧化物半導體場效應管(MOSFET)。因為MOS管更小更省電,所以他們已經在很多應用場合取代了雙極型晶體。
判斷是NMOS還是PMOS
在區分這三個引腳時,可以通過測量它們的電阻值來判斷是N型還是P型MOS管。如果阻值較大,則表明是N型;如果阻值較小,則表明是P型。具體操作是,將萬用表撥至R×1k檔,用萬用表的負極任意接一電極,另一只表筆依次去接觸其余的兩個極,測其電阻。若兩次測得的電阻值近似相等,則負表筆所接觸的為柵極,另外兩電極為漏極和源極。
判斷柵極G
MOS驅動器主要起波形整形和加強驅動的作用:假如MOS管的G信號波形不夠陡峭,在點評切換階段會造成大量電能損耗其副作用是降低電路轉換效率,MOS管發燒嚴峻,易熱損壞MOS管GS間存在一定電容,假如G信號驅動能力不夠,將嚴峻影響波形跳變的時間。
將G-S極短路,選擇萬用表的R×1檔,黑表筆接S極,紅表筆接D極,阻值應為幾歐至十幾歐。若發現某腳與其字兩腳的電阻均呈無限大,并且交換表筆后仍為無限大,則證實此腳為G極,由于它和另外兩個管腳是絕緣的。
判斷源極S、漏極D
將萬用表撥至R×1k檔分別丈量三個管腳之間的電阻。用交換表筆法測兩次電阻,其中電阻值較低(一般為幾千歐至十幾千歐)的一次為正向電阻,此時黑表筆的是S極,紅表筆接D極。因為測試前提不同,測出的RDS(on)值比手冊中給出的典型值要高一些。
MOS管的工作原理(以N溝道增強型MOS場效應管)
它是利用VGS來控制“感應電荷”的多少,以改變由這些“感應電荷”形成的導電溝道的狀況,然后達到控制漏極電流的目的。在制造管子時,通過工藝使絕緣層中出現大量正離子,故在交界面的另一側能感應出較多的負電荷,這些負電荷把高滲雜質的N區接通,形成了導電溝道,即使在VGS=0時也有較大的漏極電流ID。當柵極電壓改變時,溝道內被感應的電荷量也改變,導電溝道的寬窄也隨之而變,因而漏極電流ID隨著柵極電壓的變化而變化。
優質的MOS管可以接受的電流峰值更高。普通狀況下我們要判別主板上MOS管的質量上下,能夠看它能接受的最大電流值。影響MOS管質量上下的參數十分多,像極端電流、極端電壓等。但在MOS管上無法標注這么多參數,所以在MOS管外表普通只標注了產品的型號,我們能夠依據該型號上網查找詳細的性能參數。還要闡明的是,溫度也是MOS管一個十分重要的性能參數。主要包括環境溫度、管殼溫度、貯成溫度等。由于CPU頻率的進步,MOS管需求接受的電流也隨著加強,提供近百A的電流曾經很常見了。如此宏大的電流經過時產生的熱量當然使MOS管“發燒”了。為了MOS管的平安,高質量主板也開端為MOS管加裝散熱片了。
MOS管可以用作可變電阻也可應用于放大。由于場效應管放大器的輸入阻抗很高,因此耦合電容可以容量較小,不必使用電解電容器。且場效應管很高的輸入阻抗非常適合作阻抗變換。常用于多級放大器的輸入級作阻抗變換。場效應管可以方便地用作恒流源也可以用作電子開關。
有些場效應管的源極和漏極可以互換使用,柵壓也可正可負,靈活性比晶體管好。場效應管能在很小電流和很低電壓的條件下工作,而且它的制造工藝可以很方便地把很多場效應管集成在一塊硅片上,因此場效應管在大規模集成電路中得到了廣泛的應用。
在一般電子電路中,通常被用于放大電路或開關電路。而在主板上的電源穩壓電路中,MOSFET扮演的角色主要是判斷電位,它在主板上常用“Q”加數字表示。