我有一個像這樣的數據幀,它跟蹤特定項(ID)的值隨時間的變化:mytime=np.tile( np.arange(0,10) , 2 )
myids=np.repeat( [123,456], [10,10] )
myvalues=np.random.random_integers(20,30,10*2)
df=pd.DataFrame()
df['myids']=myids
df['mytime']=mytime
df['myvalues']=myvalues
+-------+--------+----------+--+--+
| myids | mytime | myvalues | | |
+-------+--------+----------+--+--+
| 123 | 0 | 29 | | |
+-------+--------+----------+--+--+
| 123 | 1 | 23 | | |
+-------+--------+----------+--+--+
| 123 | 2 | 26 | | |
+-------+--------+----------+--+--+
| 123 | 3 | 24 | | |
+-------+--------+----------+--+--+
| 123 | 4 | 25 | | |
+-------+--------+----------+--+--+
| 123 | 5 | 29 | | |
+-------+--------+----------+--+--+
| 123 | 6 | 28 | | |
+-------+--------+----------+--+--+
| 123 | 7 | 21 | | |
+-------+--------+----------+--+--+
| 123 | 8 | 20 | | |
+-------+--------+----------+--+--+
| 123 | 9 | 26 | | |
+-------+--------+----------+--+--+
| 456 | 0 | 26 | | |
+-------+--------+----------+--+--+
| 456 | 1 | 24 | | |
+-------+--------+----------+--+--+
| 456 | 2 | 20 | | |
+-------+--------+----------+--+--+
| 456 | 3 | 26 | | |
+-------+--------+----------+--+--+
| 456 | 4 | 29 | | |
+-------+--------+----------+--+--+
| 456 | 5 | 29 | | |
+-------+--------+----------+--+--+
| 456 | 6 | 24 | | |
+-------+--------+----------+--+--+
| 456 | 7 | 21 | | |
+-------+--------+----------+--+--+
| 456 | 8 | 27 | | |
+-------+--------+----------+--+--+
| 456 | 9 | 29 | | |
+-------+--------+----------+--+--+
我需要計算每個id的最大運行時間
^{pr2}$
將計算運行的最大值,而不考慮id,而我需要一個類似的計算,但是每次id更改時都會重置。我可以想出一個簡單的腳本在numba中實現(我有非常大的數組,非向量化的非numba代碼會很慢),但是有沒有更簡單的方法來實現呢?在
只有兩個值可以運行:
^{3}$
但是對于很多很多值,這是不可行的。在
謝謝!在