對考生而言,充分了解高校、專業以及師資情況是一項最基礎、最關鍵的工作。以下是中公考研小編為大家整理的“清華大學計算機科學與技術系導師簡介:應明生”的相關信息,希望對同學們有所幫助。
姓名:應明生
職稱:教授
郵件:yingmsh@tsinghua.edu.cn
教育背景
大學專科 (數學), 江西師范學院撫州分院, 中國, 1981.
社會兼職
Artificial Intelligence Journal: 編委 (2008-).
研究領域
量子計算
程序設計語言的語義學, 人工智能中的邏輯
研究概況
1. 進程代數中的拓撲:進程代數是并發系統最成功的模型之一,其中的一個核心概念是互模擬,但它不能描述并發系統的近似行為。為了解決這個問題,我提出了進程代數中的一種拓撲理論,用于描述并發系統的近似正確性與進化過程。
2. 量子程序的Floyd-Hoare邏輯:Floyd-Hoare邏輯是程序公理語義學與程序正確性驗證的基礎。作為未來量子計算機程序設計方法學的邏輯基礎,我最近為量子程序建立了包括部分正確性與完全正確性的Floyd-Hoare型邏輯,特別是證明了其(相對)完備性,其證明與情形不同,需要引入新的技巧,特別是分析數學的工具。
獎勵與榮譽
國家自然科學二等獎——非計算的形式化模型與邏輯基礎 (2008);
教育部自然科學一等獎——面向復雜特征的形式化方法及其邏輯基礎 (2004);
中國青年科技獎 (1994).
學術成果
[1] M. S. Ying, Quantum computation, quantum theory and AI (Invited Field Review), Artificial Intelligence, 174(2010)162-176.
[2] H. Zhang and M. S. Ying, Decidable fragments of first-order language under stable model semantics and circumscription, Proc. of the 24th AAAI Conference on Artificial Intelligence (AAAI-10), 2010.
[3] W. M. Liu, X. T. Zhang, S. J. Li and M. S. Ying, Reasoning about cardinal directions between extended objects, Artificial Intelligence, (In Press, Available online 15 June 2010).
[4] M. S. Ying, R. Y. Duan, Y. Feng and Z. F. Ji, Predicate transformer semantics of quantum programs (Invited Chapter), in S. Gay and I. Mackie (eds.), Semantic Techniques in Quantum Computation, Cambridge University Press, 2010, Cambridge, pp.311-360.
[5] M. S. Ying and Y. Feng, An algebraic language for distributed quantum computing, IEEE Transactions on Computers, 58(2009)728-743.
[6] M. S. Ying, Y. Feng, R. Y. Duan and Z. F. Ji, An algebra of quantum processes, ACM Transactions on Computational Logic, 10(2009) art. no. 19.
[7] R. Y. Duan, Y. Feng, X. Yu and M. S. Ying, Distinguishability of quantum states by separable operations, IEEE Transactions on Information Theory, 55(2009)1320-1330.
[8] R. Y. Duan, Y. Feng and M. S. Ying, Perfect distinguishability of quantum operations, Physical Review Letters, 103(2009) art. no. 210501.
[9] Z. F. Ji, G. M. Wang, R. Y. Duan, Y. Feng and M. S. Ying, Parameter estimation of quantum channels, IEEE Transactions on Information Theory, 54(2008)5172-5185.
[10] R. Y. Duan, Y. Feng and M. S. Ying, Local distinguishability of multipartite unitary operations, Physical Review Letters, 100(2008) art. No. 020503.
[11] S. J. Li and M. S. Ying, Soft constraint abstraction based on semiring homomorphism, Theoretical Computer Science, 403(2008)192-201.
[12] X. T. Zhang, W. M. Liu, S. J. Li and M. S. Ying, Reasoning with cardinal directions: An efficient algorithm, in: Proc. of the 23rd AAAI Conference on Artificial Intelligence (AAAI-08), 2008, pp. 387-392.
[13] M. S. Ying, Quantum logic and automata theory (Invited Chapter), in: D. Gabbay, D. Lehmann and K. Engesser (eds), Handbook of Quantum Logic and Quantum Structures, Elsevier, 2007, Amsterdam, pp.619-754.
[14] Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Proof rules for correctness of quantum programs, Theoretical Computer Science, 386(2007)151-166.
[15] Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Probabilistic bisimulations for quantum processes, Information and Computation, 104(2007)152-158.
[16] R. Y. Duan, Y. Feng and M. S. Ying, Entanglement is not necessary for perfect discrimination between unitary operations, Physical Review Letters, 98(10)(2007), art. No. 100503.
[17] L. R. Xia, J. Lang and M. S. Ying, Strongly decomposable voting rules on multi-attribute domains, in: Proceedings, 22nd National Conference on Artificial Intelligence (AAAI'07).
[18] M. S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence, 170(6-7)(2006), 581-606.
[19] Z. F. Ji, Y. Feng, R. Y. Duan and M. S. Ying, Identification and distance measures of measurement apparatus, Physical Review Letters, 96(20)(2006), art. No. 200401.
[20] R. Y. Duan, Y. Feng and M. S. Ying, Partial recovery of quantum entanglement, IEEE Transactions on Information Theory, 52(7)(2006), 3080-3104.
[21] Y. Z. Cao and M. S. Ying, Similarity-based supervisory control of discrete-event systems, IEEE Transactions on Automatic Control, 51 (2)(2006), 325-330.
[22] M. S. Ying, A theory of computation based on quantum logic (I), Theoretical Computer Science, 344(2-3)(2005) 134-207.
[23] M. S. Ying, Pi-calculus with noisy channels, Acta Informatica, 41(9)(2005), 525-593.
[24] M. S. Ying, Knowledge transformation and fusion for system diagnosis, Artificial Intelligence, 163(1)(2005)1-45.
[25] Y. Feng, R. Y. Duan and M. S. Ying, Catalyst-assisted probabilistic entanglement transformations, IEEE Transactions on Information Theory, 51(3)(2005), 1090-1101.
[26] X. M. Sun, R. Y. Duan, and M. S. Ying, The existence of quantum entanglement catalysts, IEEE Transactions on Information Theory, 51(1)(2005), 75-80.
[27] S. J. Li and M. S. Ying, Generalized region calculus, Artificial Intelligence, 160(1-2)(2004), 1-34.
[28] D. W. Qiu and M. S. Ying, Characterization of quantum automata, Theoretical Computer Science, 312(2-3) (2004)479-489.
[29] M. S. Ying, Reasoning about probabilistic sequential programs in a probabilistic logic, Acta Informatica, 39(5) (2003), 318-389.
[30] S. J. Li and M. S. Ying, Region connection calculus: its models and composition table, Artificial Intelligence, 145(1-2)(2003), 121-146.
[31] M. S. Ying, Bisimulation indexes and their applications, Theoretical Computer Science, 275(1-2) (2002), 1-68.
[32] M. S. Ying, Additive models for probabilistic processes, Theoretical Computer Science, 275(1-2) (2002), 481-519.
[33] M. S. Ying and H. Q. Wang, A lattice-theoretical model of consequences, conjectures and hypotheses, Artificial Intelligence, 139(2) (2002), 253-267.
[34] M. S. Ying, Topology in Process Calculus: Approximate Correctness and Infinite Evolution of Concurrent Programs (Research Monograph), Springer-Verlag, New York, February 2001.
[35] M. S. Ying, M. Wirsing, Recursive equations in higher-order process calculi, Theoretical Computer Science, 266(1-2) (2001), 389-352.
[36] M. S. Ying, Weak confluence and -inertness, Theoretical Computer Science, 238(1-2)( 2000), 465-475.
[37] L. Biacino, G. Gerla and M. S. Ying, Approximate reasoning based on similarity, Mathematical Logic Quarterly, 46(1)(2000), 77-86.
[38] M. S. Ying, A shorter proof to uniqueness of solutions of equations, Theoretical Computer Science, 216(1-2) (1999), 395-397.
[39] M. S. Ying, When is the ideal completion of abstract basis algebraic, Theoretical Computer Science, 159(2) (1996), 355-356.
[40] M. S. Ying, A logic for approximate reasoning, The Journal of Symbolic Logic, 59(3)(1994), 830-837.
[41] M. S. Ying, The fundamental theorem of ultraproduct in Pavelka's logic, Zeitschr. f. math. Logik und Grundlagen d. Math., 38(3)(1992), 197-201.
[42] M. S. Ying, Compactness, the Lowenheim-Skolem property and the direct product of lattices of truth values, Zeitschr. f. math. Logik und Grundlagen d. Math., 38(5-6)(1992), 521-524.
[43] M. S. Ying, Deduction theorem for many-valued inference, Zeitschr. f. math. Logik und Grundlagen d. Math., 37(6)(1991), 533-537.
[44] M. S. Ying, On a class of non-causal triangle functions, Mathematical Proceedings of Cambridge Philosophical Society, 106(3)(1989), 467-469.
以上就是小編為大家整理的“清華大學計算機科學與技術系導師簡介:應明生”的相關信息,預祝同學們都能順利的通過考試!中公考研針對每一個科目要點與每年的大綱進行深入并具有針對性的指導分析,歡迎各位考生了解咨詢。