簡單介紹
1、什么是序列化
- 序列化:把內存中的對象,轉換成字節序列(或其他數據傳輸協議)以便于存儲到磁盤(持久化)和網絡傳輸。
- 反序列化:將收到字節序列(或其他數據傳輸協議)或者是磁盤的持久化數據,轉換成內存中的對象。
2、 為什么要序列化
對象的序列化(Serialization)用于將對象編碼成一個字節流,以及從字節流中重新構建對象。"將一個對象編碼成一個字節流"稱為序列化該對象(SeTializing);相反的處理過程稱為反序列化(Deserializing)。 序列化有三種主要的用途:
-
作為一種持久化格式:一個對象被序列化以后,它的編碼可以被存儲到磁盤上,供以后反序列化用。
-
作為一種通信數據格式:序列化結果可以從一個正在運行的虛擬機,通過網絡被傳遞到另一個虛擬機上。
-
作為一種拷貝、克隆(clone)機制:將對象序列化到內存的緩存區中。然后通過反序列化,可以得到一個對已存對象進行深拷貝的新對象。
在分布式數據處理中,主要使用上面提到的前兩種功能:數據持久化和通信數據格式
需求
統計每一個手機號耗費的總上行流量、下行流量、總流量(txt文檔在/Users/lizhengi/test/input/目錄下)
1 13736230513 192.196.2.1 www.shouhu.com 2481 24681 200
2 13846544121 192.196.2.2 264 0 200
3 13956435636 192.196.2.3 132 1512 200
4 13966251146 192.168.2.1 240 0 404
5 18271575951 192.168.2.2 www.shouhu.com 1527 2106 200
6 18240717138 192.168.2.3 www.hao123.com 4116 1432 200
7 13590439668 192.168.2.4 1116 954 200
8 15910133277 192.168.2.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.2.6 240 0 200
10 13630577991 192.168.2.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.2.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.2.9 www.hao123.com 1938 180 500
13 13560439638 192.168.2.10 918 4938 200
14 13470253144 192.168.2.11 180 180 200
15 13682846555 192.168.2.12 www.qq.com 1938 2910 200
16 13992314666 192.168.2.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.2.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.2.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.2.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.2.17 120 120 200
21 13568436656 192.168.2.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.2.19 1116 954 200
實現過程
1、新建Maven工程,pom.xml依賴如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.lizhengi</groupId><artifactId>Hadoop-API</artifactId><version>1.0-SNAPSHOT</version><dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>RELEASE</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>2.8.2</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>3.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.2.1</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>3.2.1</version></dependency></dependencies></project>
2、src/main/resources目錄下,新建一個文件,命名為“log4j.properties”,添加內容如下
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
3、編寫Bean類-FlowBean
package com.lizhengi.flow;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;/*** @author lizhengi* @create 2020-07-20*/
// 1 實現writable接口
public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //總流量//2 反序列化時,需要反射調用空參構造函數,所以必須有public FlowBean() {}@Overridepublic String toString() {return upFlow + "\t" + downFlow + "\t" + sumFlow;}public void set(long upFlow, long downFlow) {this.upFlow = upFlow;this.downFlow = downFlow;this.sumFlow = upFlow + downFlow;}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}//3 寫序列化方法public void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}//4 反序列化方法//5 反序列化方法讀順序必須和寫序列化方法的寫順序必須一致public void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();}}
4、編寫Mapper類-FlowMapper
package com.lizhengi.flow;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author lizhengi* @create 2020-07-20*/
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {private Text phone = new Text();private FlowBean flow = new FlowBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String[] fields = value.toString().split("\t");phone.set(fields[1]);long upFlow = Long.parseLong(fields[fields.length - 3]);long downFlow = Long.parseLong(fields[fields.length - 2]);flow.set(upFlow,downFlow);context.write(phone, flow);}
}
5、編寫Reducer類-FlowReducer
package com.lizhengi.flow;import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;/*** @author lizhengi* @create 2020-07-20*/
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {private FlowBean sunFlow = new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context)throws IOException, InterruptedException {long sum_upFlow = 0;long sum_downFlow = 0;// 1 遍歷所用bean,將其中的上行流量,下行流量分別累加for (FlowBean value : values) {sum_upFlow += value.getUpFlow();sum_downFlow += value.getDownFlow();}// 2 封裝對象sunFlow.set(sum_upFlow, sum_downFlow);// 3 寫出context.write(key, sunFlow);}
}
6、編寫Drvier類-FlowDriver
package com.lizhengi.flow;/*** @author lizhengi* @create 2020-07-20*/import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class FlowDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {// 1 獲取job實例Job job = Job.getInstance(new Configuration());// 2.設置類路徑job.setJarByClass(FlowDriver.class);// 3 指定本業務job要使用的mapper/Reducer業務類job.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);// 4 指定mapper輸出數據的kv類型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);// 5 指定最終輸出的數據的kv類型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);// 6 指定job的輸入原始文件所在目錄FileInputFormat.setInputPaths(job, "/Users/marron27/test/input");FileOutputFormat.setOutputPath(job, new Path("/Users/marron27/test/output"));//FileInputFormat.setInputPaths(job, new Path(args[0]));//FileOutputFormat.setOutputPath(job, new Path(args[1]));// 7 將job中配置的相關參數,以及job所用的java類所在的jar包, 提交給yarn去運行boolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}
結果展示
Carlota:output marron27$ pwd
/Users/marron27/test/output
Carlota:output marron27$ cat part-r-00000
13470253144 180 180 360
13509468723 7335 110349 117684
13560439638 918 4938 5856
13568436656 3597 25635 29232
13590439668 1116 954 2070
13630577991 6960 690 7650
13682846555 1938 2910 4848
13729199489 240 0 240
13736230513 2481 24681 27162
13768778790 120 120 240
13846544121 264 0 264
13956435636 132 1512 1644
13966251146 240 0 240
13975057813 11058 48243 59301
13992314666 3008 3720 6728
15043685818 3659 3538 7197
15910133277 3156 2936 6092
15959002129 1938 180 2118
18240717138 4116 1432 5548
18271575951 1527 2106 3633
18390173782 9531 2412 11943