誰是贏家_人工智能競賽正在進行中。 這是贏家。

誰是贏家

by Terren Peterson

由Terren Peterson

人工智能競賽正在進行中。 這是贏家。 (The race is on for artificial intelligence. Here’s who is winning.)

On Saturday, Louisville, Kentucky hosted the 143rd running of the Kentucky Derby. It was a spectacle where more than 150k people watched in person. Millions more followed on television and streaming media. The winner received a $1.4 million prize, and the opportunity for more winnings in later races this year.

星期六,肯塔基州路易斯維爾舉辦了第143場肯塔基德比大賽 。 超過15萬人親自觀看的奇觀。 電視和流媒體上還有數以百萬計的關注。 獲勝者將獲得140萬美元的獎金,并有機會在今年的以后比賽中贏得更多獎金。

A bigger race is raging within the technology sector around who can commoditize machine learning as a service. Prebuilt machine learning models are worth billions of dollars. This competition pits the largest technology companies on the planet.

誰可以將機器學習作為服務商品化,因此在技術領域內,一場激烈的競賽正在展開。 預建的機器學習模型價值數十億美元。 這場競爭使全球最大的技術公司陷入困境。

Events such as the Kentucky Derby actually have many races going on during the same day. The race to dominate machine learning is the same. For this article, I’m going to just focus on how the race for image recognition is shaping up.

諸如肯塔基德比之類的活動實際上在同一天進行著許多比賽。 主導機器學習的競賽是相同的。 在本文中,我將只關注圖像識別競賽的發展趨勢。

云競爭者 (The Cloud Contenders)

Right now there are options from each of the major Public Cloud vendors. Amazon, Google, and Microsoft get a prime position based on their storage hosting services. Their offerings will determine the market direction. Image recognition may become a feature built into big cloud-based image storage systems. This move would eliminate prebuilt models as a separate product.

現在,每個主要的公共云供應商都提供了一些選擇。 亞馬遜,谷歌和微軟基于它們的存儲托管服務而處于領先地位。 他們的產品將決定市場方向。 圖像識別可能會成為內置在大型基于云的圖像存儲系統中的功能。 此舉將消除預建模型作為單獨的產品。

測試當前產品 (Testing out the current offerings)

To “race” the providers against one another, I used the photo below from Wikipedia. To make the article more readable, I reduced the precision on each of the responses below to three digits.

為了使提供程序彼此“競爭”,我使用了Wikipedia的以下照片。 為了使文章更具可讀性,我將下面每個回答的精度降低到三位數。

亞馬孫 (Amazon)

Amazon has the largest Public Cloud footprint in the industry. Six months ago they released their MVP of Rekognition. This service builds on their Cloud platform as it integrates into S3 and Lambda. Here is what their models determine from the race photo.

亞馬遜擁有業內最大的公共云資源。 六個月前,他們發布了Rekognition的MVP 。 該服務在集成到S3和Lambda的云平臺上構建。 這是他們的模型根據比賽照片確定的。

[{’Confidence’: 98.0, ’Name’: ’Animal’},{’Confidence’: 98.0, ’Name’: ’Horse’},{’Confidence’: 98.0, ’Name’: ’Mammal’},{’Confidence’: 90.8, ’Name’: ’Equestrian’},{’Confidence’: 90.8, ’Name’: ’Person’},{’Confidence’: 52.7, ’Name’: ’Colt Horse’}]

谷歌 (Google)

Google has a large Cloud business, including object storage. Their history with image recognition in search is also a massive advantage. Using their Cloud Vision API provides a thorough response on the race image.

Google擁有龐大的Cloud業務,包括對象存儲。 他們在搜索中具有圖像識別的歷史也是一個巨大的優勢。 使用他們的Cloud Vision API,可以對比賽圖像提供全面的響應。

[{ "description": "horse", "score": 0.937 },{ "description": "western riding", "score": 0.889 },{ "description": "jockey", "score": 0.881 },{ "description": "racing", "score": 0.861 },{ "description": "stallion", "score": 0.810},{ "description": "mare", "score": 0.810 },{ "description": "western pleasure", "score": 0.806 },{  "description": "sports", "score": 0.776 },{  "description": "horse racing", "score": 0.775 },{  "description": "english riding", "score": 0.731 },{  "description": "horse trainer", "score": 0.722 },{  "description": "equestrian sport", "score": 0.708 },{  "description": "equestrianism", "score": 0.705 },{  "description": "animal sports", "score": 0.685 },{  "description": "barrel racing", "score": 0.648},{  "description": "eventing", "score": 0.614},{  "description": "horse like mammal", "score": 0.590},{  "description": "reining", "score": 0.546 }]

Google goes even further by adding in text recognition. When scanning the image, it translated the text in the scoreboard. See the yellow boxes in the top left of the image below.

Google進一步增加了文本識別功能。 掃描圖像時,它會翻譯記分板上的文本。 請參見下圖左上方的黃色框。

Google translates this information into a machine readable format (JSON). This is a powerful feature that others don’t offer yet.

Google會將這些信息轉換為機器可讀格式(JSON)。 這是其他人尚未提供的強大功能。

微軟 (Microsoft)

Microsoft also has the combination of a large Cloud and Search business. Their offering has been on the market for more than a year. Their Cloud Vision API recognized the image, and provided the following results.

微軟還擁有大型云和搜索業務的組合。 他們的產品已經投放市場一年多了。 他們的Cloud Vision API可以識別圖像,并提供以下結果。

[ { “name”: “grass”, “confidence”: 0.999 },{ “name”: “fence”, “confidence”: 0.999 },{ “name”: “outdoor”, “confidence”: 0.995 },{ “name”: “horse”, “confidence”: 0.985 },{ “name”: “ground”, “confidence”: 0.974 },{ “name”: “sport”, “confidence”: 0.821 },{ “name”: “horse racing”, “confidence”: 0.519 }]

長時間射擊 (The Long-Shots)

This race has more entrants than the three major Public Cloud providers. IBM has Watson, and strong capabilities in AI. They have enabled this capability within BlueMix. Here’s what I got when attempting to use the public demo using the photo.

與三大主要公有云提供商相比,該競賽的參與者更多。 IBM具有Watson,并具有強大的AI功能。 他們在BlueMix中啟用了此功能。 這是我嘗試使用帶有照片的公開演示時得到的信息。

There are limitations with this service as there are restrictions on size. This may be a usability gap the deters customers. I found a similar photo on Wikipedia that was within the 2MB threshold. The quality of the recognition was similar to the others.

此服務存在限制,因為存在大小限制。 這可能會阻止用戶使用可用性。 我在Wikipedia上發現了一張 2MB閾值以內的類似照片 。 識別的質量與其他類似。

[ { "class": "horse racing", "score": 0.922 },{ "class": "racing", "score": 0.928 },{ "class": "sport", "score": 0.928 },{ "class": "jockey (horse rider)", "score": 0.622 },{ "class": "traveler", "score": 0.622 },{ "class": "person", "score": 0.622 },{ "class": "racehorse", "score": 0.53 },{ "class": "mammal", "score": 0.53 },{ "class": "animal", "score": 0.53 },{ "class": "green color", "score": 0.876 }]

Start-ups provide creative alternatives in this race. An example is Clarifai that raised $30M last year. Their API highlighted strong recognition using the same image as the tech giants.

初創企業在這場比賽中提供了創新的選擇。 一個例子就是Clarifai ,它去年籌集了3000萬美元 。 他們的API使用與技術巨頭相同的圖像強調了強大的識別能力。

horse, 0.999equine, 0.992race, 0.990track, 0.989fast, 0.984jockey, 0.983thoroughbred, 0.981competition, 0.966gambling, 0.951filly, 0.942mare, 0.936turf, 0.924whip, 0.902best, 0.897stallion, 0.882athlete, 0.869saddle, 0.865racehorse, 0.864rider, 0.864blinker, 0.858

This highlights the potential for a newcomer to break into this race. The startup could ride the rails of an existing Cloud hosting provider, giving it economies of scale.

這凸顯了新人打入這場比賽的潛力。 該初創公司可以利用現有云托管提供商的優勢,從而實現規模經濟。

誰是贏家? (Who is the winner?)

The race is very competitive, with Google currently in the lead. Software developers integrating image recognition into their digital products are also winners. I recently built an Alexa game that uses it to play scavenger hunt. This was done with just a few lines of code, and no effort to train models.

比賽非常激烈,Google目前處于領先地位。 將圖像識別集成到其數字產品中的軟件開發人員也是贏家。 我最近制作了一個Alexa游戲,用它玩尋寶游戲。 只需執行幾行代碼,就無需訓練模型。

The current price point is around $1/thousand images. At this level, image recognition will be incorporated into many different products. The race to become the most consumed service is on!

當前的價格點約為$ 1 /千張圖片。 在此級別上,圖像識別將被集成到許多不同的產品中。 成為最消耗服務的競賽正在進行中!

翻譯自: https://www.freecodecamp.org/news/the-race-is-on-for-artificial-intelligence-heres-who-is-winning-f7dad96f1d33/

誰是贏家

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/395853.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/395853.shtml
英文地址,請注明出處:http://en.pswp.cn/news/395853.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

mysql取消mvvc機制_MySQL探秘(六):InnoDB一致性非鎖定讀

一致性非鎖定讀(consistent nonlocking read)是指InnoDB存儲引擎通過多版本控制(MVVC)讀取當前數據庫中行數據的方式。如果讀取的行正在執行DELETE或UPDATE操作,這時讀取操作不會因此去等待行上鎖的釋放。相反地,InnoDB會去讀取行的一個快照。上圖直觀地…

自動化腳本

自動化腳本工具: http://appium.io/slate/cn/master/?python#about-appium 查看app元素工具: uiautomatorviewer http://www.cnblogs.com/ITGirl00/p/4235466.html app 反編譯原理 http://blog.csdn.net/jiangwei0910410003/article/details/47188679轉載于:https://www.cnblo…

springmvc常用注解之@Controller和@RequestMapping

對于各種注解而言,排第一的當然是“Controller”,表明某類是一個controller。 “RequestMapping”請求路徑映射,如果標注在某個controller的類級別上,則表明訪問此類路徑下的方法都要加上其配置的路徑;最常用是標注在方法上&…

最小可行產品是什么_無論如何,“最小可行產品”到底意味著什么?

最小可行產品是什么by Ravi Vadrevu通過拉維瓦德雷武(Ravi Vadrevu) 無論如何,“最小可行產品”實際上是什么意思? (What does “Minimum Viable Product” actually mean, anyway?) 伊隆馬斯克(Elon Musk)提出一個令人困惑的想法 (Elon Musk on makin…

站立會議12-2

編寫團隊博客,進行資料的查看轉載于:https://www.cnblogs.com/qijun1120/p/10247725.html

徹底刪除mysql server 2005_sql2005卸載工具(sql server 2005卸載工具)

如果您要安裝新版的sql就必須先完整的卸載sql2005,如果你按照常規的方法是不能完整的卸載sql2005,從而會引起安裝的時候說sql已經掛起的錯誤,sql2005卸載工具(sql server 2005卸載工具),是一個幫你完整的清理已經安裝的sql的工具。…

谷歌瀏覽器有時會卡頓_Google不會,不要學:為什么搜索有時會比了解更好

谷歌瀏覽器有時會卡頓by Jeremy Gunter杰里米甘特(Jeremy Gunter) Google不會,不要學:為什么搜索有時會比了解更好 (Google not, learn not: why searching can sometimes be better than knowing) A few months ago, I was reading through some of th…

codevs 1907 方格取數 3

Description 在一個有m*n 個方格的棋盤中,每個方格中有一個正整數。現要從方格中取數,使任意2 個數所在方格沒有公共邊,且取出的數的總和最大。試設計一個滿足要求的取數算法。 Input 第1 行有2 個正整數m和n,分別表示棋盤的行數和…

APP應用 HTTP/1.0中keep-alive

在HTTP/1.0中keep-alive不是標準協議,客戶端必須發送Connection:Keep-Alive來激活keep-alive連接。https://www.imooc.com/article/31231HTTP協議是無狀態的協議,即每一次請求都是互相獨立的。因此它的最初實現是,每一個http請求都會打開一個…

mysql 日期滯后_如何滯后MySQL中的列?

要在MySQL中滯后一列,首先讓我們創建一個表。創建表的查詢如下-mysql> create table LagDemo-> (-> UserId int,-> UserValue int-> );示例使用insert命令在表中插入一些記錄。查詢如下-mysql> insert into LagDemo values(12,158);mysql> ins…

oracle高效分頁查詢總結

本文參考鏈接:http://blog.sina.com.cn/s/blog_8604ca230100vro9.html 探索查詢語句: --分頁參數:size 20 page 2 --沒有order by的查詢 -- 嵌套子查詢,兩次篩選(推薦使用) --SELECT * -- FROM (SELECT R…

18124 N皇后問題

18124 N皇后問題 時間限制:2000MS 內存限制:65535K提交次數:0 通過次數:0 題型: 編程題 語言: G;GCC;VC Description 有N*N的國際象棋棋盤,要求在上面放N個皇后,要求任意兩個皇后不會互殺,有多少種不同的放法? 輸入格式 每一個…

ux設計師怎樣找同類產品_沒有預算? 別找借口。 便宜的UX上的UX 2:讓我們開始構建。...

ux設計師怎樣找同類產品by Vinny文尼 沒有預算? 別找借口。 便宜的UX上的UX 2:讓我們開始構建。 (No budget? No excuse. UX on the cheap Part 2: let’s get building.) This is a continuation of my series on ‘UX on a Budget’. If you haven’…

巨蟒python全棧開發-第6天 is==

1.小數據池 2.id 3.decode和encode 小數據池 #小數據池:不要死磕就行#python為了簡化,搞出來的一個東西ID (1)# id()函數可以幫我們查看一個變量的內存地址# a10# b30# c10# print(id(a)) #1712876864# print(id(b)) #1712877504# print(id(c)) #1712876864(2)# lst[周…

安裝mysql8._安裝MySQL8(附詳細圖文)

安裝MySQL8(附詳細圖文)刪除mysql服務:mysqld -remove mysql1、下載 mysql 8下載地址:https://dev.mysql.com/downloads/mysql/2、配置 mysql 配置文件打開 mysql 8 的安裝目錄:my.ini注意設置自己對應的 mysql 安裝目錄 和數據存放目錄[mysq…

win10安裝windows live writer 錯誤:OnCatalogResult:0x80190194

到官網下載了一個在線安裝程序,可是一運行就提示無法安裝,顯式錯誤“OnCatalogResult:0x80190194”,如下圖所示 找到windows live安裝程序的安裝日志文件。具體位置是:C:\Users\All Users\Microsoft\WLSetup\Logs 需要下載安裝文件…

C# 實現一個可取消的多線程操作 示例

private void button1_Click(object sender, EventArgs e){//定義一個為可取消資源標志CancellationTokenSource cts new CancellationTokenSource();//定義二個為可取消資源標志CancellationTokenSource cts1 new CancellationTokenSource();//實現一個可取消操作的回調函數…

這些工具將提高您的Android生產率

by Michal Bialas由Michal Bialas 這些工具將提高您的Android生產率 (These tools will boost your Android productivity) The main purpose of this post is to list and describe tools (mainly free ones), which allow you to boost your productivity, efficiency, and …

python四位玫瑰數的解題思路_入門python知識點總結以及15道題的解題思路分析

知識點總結python1、序列app操做符idex in s 若是x是列表s的元素,返回True,不然Falses t 鏈接兩個序列s和ts*n或者n*s 將序列s復制n次s[i] 返回s中第i元素s[i:j]或s[i:j: k] 切片,返回序列s中第i到j-1以k為步長的元素子序列函數函數len(s) 返…

TZOJ--5480: 孤衾易暖 // POJ--3735 Training little cats (矩陣快速冪)

5480: 孤衾易暖 時間限制(普通/Java):1000MS/3000MS 內存限制:65536KByte 描述 哇,好難,我要放棄了(扶我起來,我還能A 寒夜縱長,孤衾易暖,鐘鼓漸清圓。 生活也許有些不如意的地方,但是沒有什么是擁有一…