Pytorch入門
簡單容易上手,感覺比keras好理解多了,和mxnet很像(似乎mxnet有點借鑒pytorch),記一記。
直接從例子開始學,基礎知識咱已經看了很多論文了。。。
import torch
import torch.nn as nn
import torch.nn.functional as F
# Linear 層 就是全連接層
class Net(nn.Module): # 繼承nn.Module,只用定義forward,反向傳播會自動生成def __init__(self): # 初始化方法,這里的初始化是為了forward函數可以直接調過來super(Net,self).__init__() # 調用父類初始化方法# (input_channel,output_channel,kernel_size)self.conv1 = nn.Conv2d(1,6,5) # 第一層卷積self.conv2 = nn.Conv2d(6,16,5)# 第二層卷積self.fc1 = nn.Linear(16*5*5,120) # 這里16*5*5是前向算的self.fc2 = nn.Linear(120,84) # 第二層全連接self.fc3 = nn.Linear(84,10) # 第三層全連接->分類def forward(self,x):x = F.max_pool2d(F.relu(self.conv1(x)),(2,2)) # 卷積一次激活一次然后2*2池化一次x = F.max_pool2d(F.relu(self.conv2(x)),2) # (2,2)與直接寫 2 等價x = x.view(-1,self.num_flatten_features(x)) # 將x展開成向量x = F.relu(self.fc1(x)) # 全連接 + 激活x = F.relu(self.fc2(x)) # 全連接+ 激活x = self.fc3(x) # 最后再全連接return xdef num_flatten_features(self,x):size = x.size()[1:] # 除了batch_size以外的維度,(batch_size,channel,h,w)num_features = 1for s in size:num_features*=sreturn num_features
# ok,模型定義完畢。
net = Net()
print(net)
'''
Net((conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)
'''
params = list(net.parameters())
print(len(params))
print(params[0].size())
'''
10
torch.Size([6, 1, 5, 5])
'''
inpt = torch.randn(1,1,32,32)
out = net(inpt)
print(out)
'''
tensor([[-0.0265, -0.1246, -0.0796, 0.1028, -0.0595, 0.0383, 0.0038, -0.0019,0.1181, 0.1373]], grad_fn=<AddmmBackward>)
'''
target = torch.randn(10)
criterion = nn.MSELoss()
loss = criterion(out,target)
print(loss)
'''
tensor(0.5742, grad_fn=<MseLossBackward>)
'''
net.zero_grad()# 梯度歸零
print(net.conv1.bias.grad)
loss.backward()
print(net.conv1.bias.grad)
'''
None
tensor([-0.0039, 0.0052, 0.0034, -0.0002, 0.0018, 0.0096])
'''
import torch.optim as optim
optimizer = optim.SGD(net.parameters(),lr = 0.01)
optimizer.zero_grad()
output = net(inpt)
loss = criterion(output,target)
loss.backward()
optimizer.step()
# 一個step完成,多個step就寫在循環里
pytorch簡直太好理解了。。繼續蓄力!!