監督學習與無監督學習
監督學習(Supervised Learning)
Ng的原文是:
We gave the algorithm a data set that the "right answers" were given.
即給定了一個正確結果的集合供算法學習,強調了需要實現準備好正負樣本喂給機器。
無監督學習(Supervised Learning)
原文如下:
Given the data set, Unsupervised learning algorithm might decide that the data lives in two clusters, it breaks these data into two separated clusters, so it's called clustering algorithm.
可以對比發現,相比監督學習,無監督學習事先并未給出符合預期的正確結果,而是僅僅通過算法將這些數據進行聚類(clustering),但是我們事先并不知道歸類的類別分別是什么。
分類(Classification)和回歸(Regression)
原文:
The regression problems means a real, continuous value. However, the classification problems give the known several types and you need to classify. If the case is a small number of discrete values, we should treat it as a classification problem.
分類問題是用于將事物打上一個標簽,通常結果為離散值[1]。例如區分一張圖片中的動物是貓還是狗。而回歸問題是需要預測具體值的,例如基于現有的房價數據,推測2020年的房價。其本質差別是待歸屬的類別是有限還是無限的(是否可窮盡)。
[1]:回歸(regression)與分類(classification)的區別