數據結構入門最佳書籍
Introduction
介紹
I get asked a lot what resources I recommend for people who want to start their Data Science journey. This section enlists books I recommend you should read at least once in your life as a Data Scientist.
我被很多人問到了我為想要開始數據科學之旅的人們推薦哪些資源。 本節列出了一些書,我建議您作為數據科學家一生中至少應閱讀一遍。
Do you need to read these books to learn to be a Data Scientist? The answer is: no. There are plenty of tutorials and free material online that is as good as these books. However, if you can afford to buy them and can read them as supplementary material they can become a very good resource to learn. Unlike online tutorials, these books have a structure and teach concepts in an organized and structured manner. This means instead of wasting time searching the internet to find good tutorials you can spend this time learning.
您需要閱讀這些書才能學習成為一名數據科學家嗎? 答案是不。 在線上有很多教程和免費資料,與這些書籍一樣好。 但是,如果您有能力購買它們并可以閱讀它們作為補充材料,那么它們可以成為學習的很好資源。 與在線教程不同,這些書具有結構化和以有組織和結構化的方式講授概念。 這意味著您可以花時間學習,而不是浪費時間在互聯網上尋找好的教程。
The books I recommend here cover the main topics that you will need to master as a Data Scientist: programming (python), data analysis, and Machine Learning (including deep learning). I know there are plenty of books on each topic but those are the ones that I have used in my learning journey and I can truly recommend them.
我在這里推薦的書涵蓋了您作為數據科學家需要掌握的主要主題:編程(python),數據分析和機器學習(包括深度學習)。 我知道每個主題都有很多書,但是這些都是我在學習過程中使用的書,我可以真正推薦它們。
Python Programming
Python編程

As a Data Scientist, you should be primarily a good programmer or at least work towards achieving programming proficiency at least in one language. I recommend learning python for its common usage in the Data Science and relatively simple learning curve.
作為數據科學家,您應該首先是一名優秀的程序員,或者至少要努力實現至少一種語言的編程能力。 我建議學習python,以了解它在數據科學中的常用用法以及相對簡單的學習曲線。
This book is like a python bible. It has around 1600 pages and covers all basic and more advanced python concepts.
這本書就像Python圣經。 它大約有1600頁,涵蓋了所有基本和更高級的python概念。
It is a good book for someone starting with python as it has in-depth explanations of the language and programming concepts, and the content is presented in a simple understandable manner.
對于從python開始的人來說,這是一本好書,因為它對語言和編程概念有深入的說明,并且內容以簡單易懂的方式呈現。
It will also be a very good revision for someone who has been working with python for a while but wants to get better at it, improve the understanding of the language and common concepts especially Object-Oriented Programming.
對于已經使用python一段時間但想要更好地使用它,提高對語言和通用概念(尤其是面向對象編程)的理解的人來說,這將是一個很好的修訂。
You can get this book from here (affiliate link).
您可以從這里獲得這本書(會員鏈接)。
Data Analysis
數據分析

This book covers almost everything that concerns data analysis, data cleaning, and data preprocessing with pandas. And what do Data Science do most of the time?
本書涵蓋了幾乎所有涉及數據分析,數據清理以及使用熊貓進行數據預處理的內容。 數據科學在大多數情況下會做什么?
Unfortunately or fortunately, we spend most of the time preparing data for fitting in Machine Learning algorithms. This book covers it all, and just enough python for data analyst or junior Data Scientist to get familiar with programming and libraries popular for data analysis.
不幸的是,幸運的是,我們大部分時間都在準備數據以適合機器學習算法。 本書涵蓋了所有內容,并且足夠供數據分析人員或初級數據科學家使用python,以熟悉流行于數據分析的程序和庫。
Additionally, this book has been written by Wes McKinney who is the author of pandas package. And who would be the best person to learn data analysis from if not the author of one of the most popular python data analysis library that has been created.
此外,這本書是由熊貓包裝的作者韋斯·麥金尼(Wes McKinney)撰寫的。 如果不是創建的最受歡迎的python數據分析庫之一的作者,誰將是學習數據分析的最佳人選。
You can get this book from here (affiliate link).
您可以從這里獲得這本書(會員鏈接)。
Machine Learning
機器學習

If you were to buy only one book about Machine Learning that would be my choice.
如果您只購買一本有關機器學習的書,那將是我的選擇。
It could be a book for a beginner Data Scientist wanting to have an overview of Machine Learning algorithms and how to implement them on real-life examples using scikit-learn.
它可能是一本針對初學者數據科學家的書,該書希望概述機器學習算法以及如何使用scikit-learn在實際示例中實現它們。
It is also a good revision for someone who is already familiar with Machine Learning concepts and wants a book for quick references and review.
對于已經熟悉機器學習概念并且想要一本書以便快速參考和復習的人來說,這也是一個很好的修訂。
Additionally, it has a fantastic second section that focuses on od deep learning with Keras and TensorFlow.
此外,它還有一個精彩的第二部分,重點介紹了使用Keras和TensorFlow進行深度學習。
You can get this book from here (affiliate link).
您可以從這里獲得這本書(會員鏈接)。
Other topics in Data Science
數據科學中的其他主題
Being a Data Scientist does not involve only python programming, data analysis, and Machine Learning. There are other topics that you should master in this profession. The first areas that come to my mind are Maths and Statistics.
成為數據科學家不僅僅涉及python編程,數據分析和機器學習。 在這個專業中,您還應該掌握其他主題。 我想到的第一個領域是數學和統計學。
?I am not recommending any books on those topics as I have been relying on my high school and university knowledge with those, and supplying this knowledge with online tutorials and resources. If I read any good books on those topics I will update this list.
``我不推薦任何有關這些主題的書,因為我一直依賴于我的高中和大學知識,并向這些知識提供在線教程和資源。 如果我閱讀了有關這些主題的好書,則將更新此列表。
?Originally published at https://www.aboutdatablog.com on August 19, 2020.
本來在發表 https://www.aboutdatablog.com 于2020年8月19日。
PS: I am writing articles that explain basic Data Science concepts in a simple and comprehensible on aboutdatablog.com. If you liked this article there are some other ones you may enjoy:
PS:我寫的文章在 aboutdatablog.com 上以簡單易懂的方式解釋了基本的數據科學概念 。 如果您喜歡這篇文章,您可能還會喜歡其他一些文章:
翻譯自: https://towardsdatascience.com/best-data-science-books-be1ab472876d
數據結構入門最佳書籍
本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。 如若轉載,請注明出處:http://www.pswp.cn/news/390926.shtml 繁體地址,請注明出處:http://hk.pswp.cn/news/390926.shtml 英文地址,請注明出處:http://en.pswp.cn/news/390926.shtml
如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!