vue domo網站_DOMO與Tableau-逐輪

vue domo網站

Let me be your BI consultant. Best yet, let me be your free consultant on the following question:

讓我成為您的BI顧問。 最好的是,讓我成為您的免費顧問 ,解決以下問題:

DOMO vs. Tableau — What should I use?

DOMO vs. Tableau-我應該使用什么?

I’ve had the privilege of working in both BI tools, and I can say that both platforms have their strengths and weaknesses.

我曾經有過使用這兩種BI工具的特權,我可以說這兩種平臺都有其優點和缺點。

Tableau is definitely more widely used than DOMO, but is that because it is better than DOMO? On the other hand, DOMO has an insane and almost cult-like following with events like its yearly DOMOpalooza, but is it better than Tableau?

Tableau肯定比DOMO用途更廣泛,但這是因為它比DOMO更好嗎? 另一方面,DOMO像其每年的DOMOpalooza這樣的事件都有瘋狂的,幾乎是邪教般的追隨者 ,但是它比Tableau好嗎?

Time to hash this out. Gloves on. Let’s make this a clean fight.

是時候解決這個問題了。 戴上手套。 讓我們進行一場干凈的戰斗。

Data consultants, are you ready?

數據顧問,您準備好了嗎?

Let’s Go!

我們走吧!

第一輪:連接到數據源 (Round 1: Connecting to Datasources)

Winner: DOMO — No Contest

獲獎者: DOMO-無比賽

No contest. DOMO wins hands with its 1K+ data connectors. Tableau has the main integrations that you’ll want like Excel, Salesforce, PostgreSQL and such, but DOMO just has a MASSIVE amount of supported connections.

沒有比賽。 DOMO憑借其1K +數據連接器獲勝。 Tableau具有您想要的主要集成 ,如Excel,Salesforce,PostgreSQL等,但是DOMO僅有大量支持的連接。

Easy. Round 1 to DOMO.

簡單。 第一輪進入DOMO。

第二輪:易用性 (Round 2: Ease of Use)

Winner: DOMO — Close Win

獲勝者: DOMO —接近勝利

Tableau and DOMO are pretty user friendly, and you can easily connect your data sets and get creating dashboards quickly.

Tableau和DOMO非常易于使用,您可以輕松連接數據集并快速創建儀表板。

Both platforms provide point-and-click functionality and don’t require you to know how to do code, and both provide coding capabilities with SQL.

兩種平臺都提供了點擊功能,并且不需要您知道如何編寫代碼,并且都提供了SQL編碼功能。

I found Tableau’s online dashboard creator to be a little clunky and hard to maneuver. DOMO’s cards and dashboards are just easier to manipulate in dashboards, and its stories capability just takes it over the line.

我發現Tableau的在線儀表板創建者有些笨拙且難以操縱。 DOMO的卡片和儀表板更易于在儀表板中進行操作,其故事功能使它更容易使用。

第三回合:合并和清理數據 (Round 3: Combining and Cleaning Data)

Winner: DOMO

獲獎者: DOMO

DOMO has an amazing ability to combine expert and easy to use ETL and data flow visualizations without requiring the user to know how to code in SQL. But if you want to get deep into your SQL joins and data cleaning, DOMO provides a nice MySQL workspace where you can do exactly what you want with your datasets.

DOMO具有將專家級和易于使用的ETL和數據流可視化相結合的驚人能力,而無需用戶知道如何用SQL進行編碼。 但是,如果您想深入了解SQL連接和數據清理,DOMO提供了一個不錯MySQL工作區,您可以在其中精確地執行數據集所需的工作。

DOMO also provides Beast Mode functions where you can do SQL functions like CASE WHEN queries to clean data right on a chart on a dashboard. It’s super neat, and I love it!

DOMO還提供了“野獸模式”功能,您可以在其中執行諸如CASE WHEN查詢之類SQL功能,以清除儀表板上圖表上的數據。 超級整潔,我喜歡它!

Beasty Beast Mode!
野獸野獸模式!

Tableau does have the ability to do SQL functions right on a chart, but it’s not as nice. It also has Tableau Prep Builder, but it is not as clean as DOMO’s user interface. In addition, I found that to do a lot of the data cleaning and matching between datasets, you’re going to need another add-on platform called Alteryx to really do all of what DOMO can do. Alteryx looks like a great platform as well, but it’s a whole other software that you’ll have to purchase to make Tableau function like DOMO.

Tableau確實可以在圖表上執行SQL函數,但是效果不佳。 它還具有Tableau Prep Builder ,但不如DOMO的用戶界面那么干凈。 此外,我發現要在數據集之間進行大量數據清理和匹配,您將需要另一個名為Alteryx的附加平臺來真正完成DOMO可以完成的所有工作。 Alteryx看起來也像是一個不錯的平臺,但是要使Tableau功能像DOMO一樣,您還必須購買它是一整套其他軟件。

In short, DOMO’s Magic ETL and Beast Mode features are more fun to use than Tableau’s. #roundtoDOMO

簡而言之,與Tableau相比,DOMO的Magic ETL和Beast Mode功能更有趣。 #roundtoDOMO

第四輪:數據科學深潛 (Round 4: Data Science Deep Dives)

Winner: Draw — R Plugin Functionalities

獲勝者: Draw — R插件功能

This is where you make data scientists super happy. Both Tableau and DOMO connect directly to R, sending data to and from your favorite R development platform. What you can do with this is functionality is AMAZING!

這是讓數據科學家超級高興的地方。 Tableau和DOMO都直接連接到R,并與您喜歡的R開發平臺之間發送數據。 您所能做的就是功能驚人!

Got year-by-year customer data and want to know who is most likely to purchase a new product based on past purchasing history? R is the place to do that analysis, process the predictions, and send the data to be presented in a Tableau/DOMO dashboard. When I did this in with DOMO, I used R Studio and had a data-wowing time.

獲得逐年的客戶數據,并想根據過去的購買歷史來了解誰最有可能購買新產品? R是進行分析,處理預測并發送要在Tableau / DOMO儀表板中呈現的數據的地方。 當我使用DOMO進行此操作時,我使用了R Studio,并且數據時間很長。

第五輪:公共數據和使用的儀表板 (Round 5: Dashboards for Public Data and Usage)

Winner: Tableau — No Contest

優勝者: Tableau-無比賽

Tableau has a free tool called Tableau Public where you can easily create and share your dashboards on public websites via their embed features. Free. Easy to set up. You just have to commit to the data being consumed publicly, so don’t publish your private data here!

Tableau有一個名為Tableau Public的免費工具,您可以在其中通過其嵌入功能在公共網站上輕松創建和共享儀表板。 自由。 易于設置。 您只需要承諾公開使用的數據,因此不要在此處發布您的私人數據!

As it currently stands, DOMO isn’t truly meant for publicly sharing data. It does have features like DOMO Everywhere and embeded cards enabling the public sharing of data, but from what I understand, it can’t compete with Tableau Public’s $0 price tag.

就目前而言,DOMO并不是真正意義上的公開共享數據。 它確實具有DOMO Everywhere之類的功能,并且具有可公開共享數據的嵌入式卡 ,但是據我了解,它無法與Tableau Public的$ 0價格標簽競爭。

In short, if you’re sharing your data publicly, use Tableau Public or Google Data Studio.

簡而言之,如果您要公開共享數據,請使用Tableau Public或Google Data Studio 。

第六輪:價格 (Round 6: Price)

Winner: Tableau — No Contest

優勝者: Tableau-無比賽

This is the kicker.

這就是踢腿。

DOMO’s price is not for the faint of heart, and they really don’t share their pricing model. But from what I’ve read online about the starter plan from 2018, you’re looking at about $6K for 5 users. For their premium plans, you’re looking at $20K+.

DOMO的價格不適合膽小者,而且他們確實不共享其定價模型。 但是從我在線閱讀的關于2018年的入門計劃的內容來看,您需要為5個用戶支付約6,000美元。 對于他們的高級計劃,您需要花費2萬美元以上。

DOMO is a thoroughbred racehorse, no question. You pay for a great platform, you get a great platform.

毫無疑問,DOMO是一匹純種賽馬。 您為一個出色的平臺付費,就得到一個出色的平臺。

Tableau charges $70/user for creators and $35/user for other analytics users (min of 5 users). This in comparison with DOMO’s 2018 standard plan reported prices would be about half the cost ($2.9K).

Tableau對創建者收費70美元/用戶,對其他分析用戶收費5美元/用戶(至少5個用戶)。 與DOMO的2018年標準計劃報告的價格相比,這大約是成本的一??半(2.9K美元)。

戰斗獲勝者:DOMO,如果您擁有硬幣… (Fight Winner: DOMO, if you have the coin…)

I’ll be honest; I’m a little biased towards DOMO here because its such a dream to work with, but it really is an enterprise-level software that only organizations with larger pockets can purchase. It probably will be price-exclusive for the near future because it is more of a niche player, but maybe it will drop its price in the future and open its market appeal.

我會說實話 我在這里對DOMO有點偏見,因為可以實現它的夢想,但這確實是一種企業級軟件,只有大筆錢的組織才能購買。 它可能在不久的將來是價格專有的,因為它更像是一個利基市場,但也許它將在未來降低價格并打開其市場吸引力。

Tableau is a great option, and it’s also super awesome to work with. It shines with Tableau Public and how quick it is to get off the ground, but it requires additional tools and isn’t as user-friendly as DOMO.

Tableau是一個不錯的選擇,并且使用起來也很棒。 Tableau Public令人贊嘆不已,它起步的速度非常快,但它需要其他工具,并且不像DOMO那樣易于使用。

TL;DR: If you have the budget, get DOMO. If you’re on a budget, Tableau works great. If you need free, Google Data Studio #forthewin!

TL; DR:如果您有預算,請獲取DOMO。 如果您預算有限,Tableau的效果很好。 如果需要免費,請使用Google Data Studio #forthewin!

Note: I nor my data consulting company was compensated by DOMO or Tableau for this article. I just want to help other data scientists and companies have better insight in both platforms from an end-user perspective. Information can be hard to compare between the tools, and I hope my first-hand experience and analysis of both platforms can help inform your BI decision.

注意: 我和我的 數據咨詢公司 沒有 獲得DOMO或Tableau的賠償。 我只是想幫助其他數據科學家和公司從最終用戶的角度更好地了解這兩個平臺。 這些工具之間的信息很難進行比較,我希望我對這兩個平臺的第一手經驗和分析能夠幫助您做出BI決策。

翻譯自: https://medium.com/swlh/domo-vs-tableau-round-by-round-18aae0d6bf60

vue domo網站

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/387931.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/387931.shtml
英文地址,請注明出處:http://en.pswp.cn/news/387931.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

fiddler抓包1-抓小程序https包

抓小程序包和抓app包是一樣的操作方法;安卓用fiddler,ios用charles; 一、環境準備 1.電腦已裝最新版fiddler 2.手機和電腦在同一局域網 二、fiddler設置 1.fiddler>Tools>Options>HTTPS 勾選Capture HTTPS CONNECTs 及下邊的子項&am…

多態使用的前提

1:必須是繼承(extends),實現(implements) 才行2:必須要重寫(覆蓋)父類的方法。轉載于:https://www.cnblogs.com/liyunchuan/p/10663788.html

Linux下的 FTP

1.安裝vsftpd yum install vsftpd 2.啟動/重啟/關閉vsftpd服務器 [rootlocalhost ftp]# /sbin/service vsftpd restart Shutting down vsftpd: [ OK ] Starting vsftpd for vsftpd: [ OK ] OK表示重啟成功了. 啟動和關閉分別把restart改為start/stop即可. 如果是源碼安裝的,到…

python入門23 pymssql模塊(python連接sql server增刪改數據 )

增刪改數據必須connect.commit()才會生效 回滾函數 connect.rollback() 連接數據庫 dinghanhua sql server增刪改 import pymssqlserver 192.168.1.1 user user password 111111 database testdbconnect pymssql.connect(server server,user user,passwordpassword,da…

每個人都應該使用的Python 3中被忽略的3個功能

重點 (Top highlight)Python 3 has been around for a while now, and most developers — especially those picking up programming for the first time — are already using it. But while plenty of new features came out with Python 3, it seems like a lot of them ar…

iframe自適應高度

為什么需要使用iframe自適應高度呢?其實就是為了美觀,要不然iframe和窗口長短大小不一,看起來總是不那么舒服,特別是對于我們這些編程的來說,如鯁在喉的感覺。 首先設置樣式 body{margin:0; padding:0;} 如果不設置bod…

.Net轉Java自學之路—SpringMVC框架篇八(RESTful支持)

RESTful架構,REST即Representational State Transfer。表現層狀態轉換,就是目前最流行的一種互聯網軟件架構。它結構清晰、符合標準、易于理解、擴展方便,所以得到越來越多網站的采用。 RESTful其實就是一個開發理念,是對http的很…

沖刺第七天

今天任務進行情況:今天我們將我們的游戲導到界面形成可用的應用程序,并且進行調試與運行,讓同學試玩,發現了困難并加以改正。 遇到的困難及解決方法: 運行時發現游戲界面中UI的button和image的位置會隨分辨率的不同而發…

數據探查_數據科學家,開始使用探查器

數據探查Data scientists often need to write a lot of complex, slow, CPU- and I/O-heavy code — whether you’re working with large matrices, millions of rows of data, reading in data files, or web-scraping.數據科學家經常需要編寫許多復雜,緩慢&…

Node.js Streams:你需要知道的一切

Node.js Streams:你需要知道的一切 圖像來源 Node.js流以難以使用而聞名,甚至更難理解。好吧,我有個好消息 - 不再是這樣了。 多年來,開發人員在那里創建了許多軟件包,其唯一目的是簡化流程。但在本文中,我…

oracle表分區

1.表空間:是一個或多個數據文件的集合,主要存放的是表,所有的數據對象都存放在指定的表空間中;一個數據文件只能屬于一個表空間,一個數據庫空間由若干個表空間組成,其中包括:a.系統表空間:10g以前,默認系統表空間是System,10g包括10g以后,默認系統表空間是User,存放數據字典和視…

oracle異機恢復 open resetlogs 報:ORA-00392

參考文檔:ALTER DATABASE OPEN RESETLOGS fails with ORA-00392 (Doc ID 1352133.1) 打開一個克隆數據庫報以下錯誤: SQL> alter database open resetlogs; alter database open resetlogs * ERROR at line 1: ORA-00392: log 1 of thread 1 is being…

從ncbi下載數據_如何從NCBI下載所有細菌組件

從ncbi下載數據One of the most important steps in genome analysis is gathering the data required for downstream research. This sometimes requires us to have the assembled reference genomes (mostly bacterial) so we can verify the classifiers trained or bins …

shell之引號嵌套引號大全

萬惡的引號 這個能看懂你就出師了! 轉載于:https://www.cnblogs.com/theodoric008/p/10000480.html

oracle表分區詳解

oracle表分區詳解 從以下幾個方面來整理關于分區表的概念及操作: 表空間及分區表的概念表分區的具體作用表分區的優缺點表分區的幾種類型及操作方法對表分區的維護性操作 1.表空間及分區表的概念 表空間: 是一個或多個數據文件的集合,所有的數據對象都存…

線性插值插值_揭秘插值搜索

線性插值插值搜索算法指南 (Searching Algorithm Guide) Prior to this article, I have written about Binary Search. Check it out if you haven’t seen it. In this article, we will be discussing Interpolation Search, which is an improvement of Binary Search when…

其他命令

keys *這個可以全部的值del name 這個可以刪除某個127.0.0.1:6379> del s_set(integer) 1127.0.0.1:6379> keys z*(匹配)1) "z_set2"2) "z_set"127.0.0.1:6379> exists sex(integer) 0 127.0.0.1:6379> get a"3232…

建按月日自增分區表

一、建按月自增分區表: 1.1建表SQL> create table month_interval_partition_table (id number,time_col date) partition by range(time_col)2 interval (numtoyminterval(1,month))3 (4 partition p_month_1 values less than (to_date(2014-01-01,yyyy-mm…

#1123-JSP隱含對象

JSP 隱含對象 JSP隱含對象是JSP容器為每個頁面提供的Java對象,開發者可以直接使用它們而不用顯式聲明。JSP隱含對象也被稱為預定義變量。 JSP所支持的九大隱含對象: 對象,描述 request,HttpServletRequest類的實例 response&#…

按照時間,每天分區;按照數字,200000一個分區

按照時間,每天分區 create table test_p(id number,createtime date) partition by range(createtime) interval(numtodsinterval(1,day)) store in (users) ( partition test_p_p1 values less than(to_date(20140110,yyyymmdd)) ); create index index_test_p_id …