文章目錄
- Deep Residual Learning for Image Recognition(CVPR2016)
- 方法
- Densely Connected Convolutional Networks(CVPR2017)
- 方法
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)
- 方法
- Res2Net: A New Multi-scale Backbone Architecture
- 方法
- Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
- 方法
- Contrastive Learning of Medical Visual Representations from Paired Images and Text
- 本文方法
- RegNet: Self-Regulated Network for Image Classification
- 本文方法
- Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)
- 方法
- Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images
- 本文方法
- Tensor Networks for Medical Image Classification(MIDL2020)
- 方法
- SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data
- 方法
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- 方法
- MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)
- 方法
- VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)
- 方法
- CSPNet: A New Backbone that can Enhance Learning Capability of CNN
- 方法
- Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
- 本文方法
- SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations
- 本文方法
- Going Deeper with Convolutions
- 本文方法
- Squeeze-and-Excitation Networks
- 方法
Deep Residual Learning for Image Recognition(CVPR2016)
方法
resnet經典,使網絡變得更深
Densely Connected Convolutional Networks(CVPR2017)
方法
每一層之間互相連接
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(ICML2019)
方法
相當于是在相對較小的參數下衡量最好的規模(長寬深度以及分辨率)
Res2Net: A New Multi-scale Backbone Architecture
方法
相當于是多規模
Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation
方法
我沒理解錯誤的話相當于是保留上幾步的操作的單元,類似于RNN思想
Contrastive Learning of Medical Visual Representations from Paired Images and Text
本文方法
RegNet: Self-Regulated Network for Image Classification
本文方法
可以借鑒的一個方法
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification(ICCV2021)
方法
相當于是以AUC為目標的優化,原理就不解讀了,不是很簡單
代碼地址
Attention Gated Networks:Learning to Leverage Salient Regions in Medical Images
本文方法
相當于就是得到一個注意力系數,這個系數是關于兩張特征圖的
Tensor Networks for Medical Image Classification(MIDL2020)
方法
對張量進行操作的
SKID: Self-Supervised Learning for Knee Injury Diagnosis from MRI Data
方法
看代碼是最好的
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
方法
就是深度學分離卷積減少參數
MobileNetV2: Inverted Residuals and Linear Bottlenecks(CVPR2018)
方法
和一代相比,參數量減少,增加了殘差
VIT:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(ICLR2021)
方法
來源于自然語言,不是很復雜,了解一下注意力計算就差不多了
CSPNet: A New Backbone that can Enhance Learning Capability of CNN
方法
看看代碼就差不多了
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
本文方法
相當于就是通過梯度得到可解釋性的結果
SIMCLR:A Simple Framework for Contrastive Learning of Visual Representations
本文方法
兩種不同的數據增強做一個對比損失
Going Deeper with Convolutions
本文方法
Squeeze-and-Excitation Networks
方法
SE模塊